Synthesis of nickel hydroxide in the presence of acetate ion as a «soft» ligand for application in chemical power sources

Authors

  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Russian Federation https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Russian Federation https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2019.185313

Keywords:

nickel hydroxide, α-Ni(OH)2, electrochemical activity, alkaline battery, acetate

Abstract

Nickel hydroxide is widely used as the active material in chemical power sources. The formation mechanism of nickel hydroxide includes two fast phases of the formation of an initial amorphous particle and slow aging (crystallization) stage. Characteristics of nickel hydroxide can be improved by slowing down the first stage through the reaction of nickel cation with «soft» ligand and formation of a weak complex. It is proposed to use acetate ion as a «soft» ligand, which forms a complex with Ni2+ without the outer sphere. The influence of acetate ion on the crystal structure, particle morphology and electrochemical properties of nickel hydroxide chemically precipitated at high supersaturation using nickel sulfate in the presence and absence of sodium acetate is studied. The crystal structure of the samples is studied by means of X-ray diffraction analysis and sample morphology – by means of scanning electron microscopy, electrochemical properties – cyclic voltammetry. A comparative analysis of the characteristics of the samples prepared in the presence and absence of sodium acetate is carried out. The results of XRD analysis revealed that synthesis in the presence of acetate ion leads to the formation of a bi-phase system that contains low crystallinity β-Ni(OH)2 and α-Ni(OH)2. This also leads to a higher content of smaller particles with a larger surface area. The comparative analysis of electrochemical characteristics revealed the formation of a more active samples in the presence of acetate ions, which predominantly behaves like the α-form. The sample activity increased during cycling. Synthesis in the presence of acetate ion results in the increase of specific discharge peak current (equivalent to electrochemical activity) by 1.93 times, in comparison to the sample synthesized under the same condition but in the absence of acetate ions

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Chemical Technology of Food Additives and Cosmetics

Senior Researcher

Competence center "Ecological technologies and systems"

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Senior Researcher

Competence center "Ecological technologies and systems"

References

  1. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
  2. Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: http://doi.org/10.1590/s0100-40422010001000030
  3. Chen, J. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606. doi: https://doi.org/10.1149/1.1392522
  4. Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: https://doi.org/10.1021/am403684z
  5. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1
  6. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0
  7. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7
  8. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
  9. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e
  10. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  11. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.
  12. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
  13. Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049
  14. Huang, W., Li, Z. L., Peng, Y. D., Chen, S., Zheng, J. F., Niu, Z. J. (2005). Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode. Journal of Solid State Electrochemistry, 9 (5), 284–289. doi: https://doi.org/10.1007/s10008-004-0599-5
  15. Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose. Journal of The Electrochemical Society, 161 (10), B201–B206. doi: https://doi.org/10.1149/2.0251410jes
  16. Miao, Y., Ouyang, L., Zhou, S., Xu, L., Yang, Z., Xiao, M., Ouyang, R. (2014). Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics, 53, 428–439. doi: https://doi.org/10.1016/j.bios.2013.10.008
  17. Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: https://doi.org/10.1149/1.1865852
  18. Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: https://doi.org/10.1007/s10008-005-0035-5
  19. Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: https://doi.org/10.1149/1.1393480
  20. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: http://doi.org/10.1023/a:1003493711239
  21. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050
  22. Kotok, V., Kovalenko, V. (2019). Definition of the influence of obtaining method on physical and chemical characteristics of Ni (OH)2 powders. Eastern-European Journal of Enterprise Technologies, 1 (12 (97)), 21–27. doi: https://doi.org/10.15587/1729-4061.2019.156093
  23. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
  24. Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041
  25. Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179. doi: https://doi.org/10.1149/1.1403731
  26. Zhang, Z., Zhu, Y., Bao, J., Zhou, Z., Lin, X., Zheng, H. (2012). Structural and electrochemical performance of additives-doped α-Ni(OH)2. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27 (3), 538–541. doi: https://doi.org/10.1007/s11595-012-0500-9
  27. Sugimoto, A., Ishida, S., Kenzo, H. (1999). Preparation and Characterization of Ni/Al-Layered Double Hydroxide. Journal of The Electrochemical Society, 146 (4), 1251–1255. doi: https://doi.org/10.1149/1.1391754
  28. Zhen, F. Z., Quan, J. W., Min, Y. L., Peng, Z., Jun, J. L. (2004). A study on the structure and electrochemical characteristics of a Ni/Al double hydroxide. Metals and Materials International, 10 (5), 485–488. doi: https://doi.org/10.1007/bf03027353
  29. Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S., Song, D. Y., Zhou, Z. X. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29 (7), 853–858. doi: https://doi.org/10.1023/a:1003537900947
  30. Caravaggio, G. A., Detellier, C., Wronski, Z. (2001). Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. Journal of Materials Chemistry, 11 (3), 912–921. doi: https://doi.org/10.1039/b004542j
  31. Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 35 (6), 2539–2545. doi: https://doi.org/10.1016/j.ijhydene.2010.01.015
  32. Zhao, Y. L., Wang, J. M., Chen, H., Pan, T., Zhang, J. Q., Cao, C. N. (2004). Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. International Journal of Hydrogen Energy, 29 (8), 889–896. doi: https://doi.org/10.1016/j.ijhydene.2003.10.006
  33. Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004
  34. Faour, A., Mousty, C., Prevot, V., Devouard, B., De Roy, A., Bordet, P. et. al. (2012). Correlation among Structure, Microstructure, and Electrochemical Properties of NiAl–CO3 Layered Double Hydroxide Thin Films. The Journal of Physical Chemistry C, 116 (29), 15646–15659. doi: https://doi.org/10.1021/jp300780w
  35. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
  36. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  37. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
  38. Kovalenko, V., Kotok, V. (2018). “The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate. Eastern-European Journal of Enterprise Technologies, 5 (6 (95)), 12–20. doi: https://doi.org/10.15587/1729-4061.2018.143126
  39. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
  40. Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
  41. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  42. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
  43. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
  44. Miao, C., Zhu, Y., Zhao, T., Jian, X., Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3−. Ionics, 21 (12), 3201–3208. doi: https://doi.org/10.1007/s11581-015-1507-y
  45. Li, Y., Yao, J., Zhu, Y., Zou, Z., Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177–183. doi: https://doi.org/10.1016/j.jpowsour.2011.11.081
  46. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
  47. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
  48. Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
  49. Vasserman, I. N. (1980). Himicheskoe osazhdenie iz rastvorov. Leningrad: Himiya, 208.
  50. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  51. Vlasova, E., Кovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
  52. Deabate, S., Fourgeot, F., Henn, F. (1999). Structural and electrochemical characterization of nickel hydroxide obtained by the new synthesis route of electrodialysis. A comparison with spherical β-Ni(OH)2. Ionics, 5 (5-6), 371–384. doi: https://doi.org/10.1007/bf02376001
  53. Cheng, J., Cao, G.-P., Yang, Y.-S. (2006). Characterization of sol–gel-derived NiOx xerogels as supercapacitors. Journal of Power Sources, 159 (1), 734–741. doi: https://doi.org/10.1016/j.jpowsour.2005.07.095
  54. Rocha, M. A., Winnischofer, H., Araki, K., Anaissi, F. J., Toma, H. E. (2011). A New Insight on the Preparation of Stabilized Alpha-Nickel Hydroxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 11 (5), 3985–3996. doi: https://doi.org/10.1166/jnn.2011.3872
  55. Liu, K. C., Anderson, M. A. (1996). Porous nickel oxide/nickel films for electrochemical capacitors. Journal of The Electrochemical Society, 143 (1), 124–130. doi: https://doi.org/10.1149/1.1836396
  56. Martins, P. R., Araújo Parussulo, A. L., Toma, S. H., Rocha, M. A., Toma, H. E., Araki, K. (2012). Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application. Journal of Power Sources, 218, 1–4. doi: https://doi.org/10.1016/j.jpowsour.2012.06.065
  57. Liu, X., Yu, L. (2004). Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Materials Letters, 58 (7-8), 1327–1330. doi: https://doi.org/10.1016/j.matlet.2003.09.054
  58. Liang, Z.-H., Zhu, Y.-J., Hu, X.-L. (2004). β-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets. The Journal of Physical Chemistry B, 108 (11), 3488–3491. doi: https://doi.org/10.1021/jp037513n
  59. Ma, X., Liu, J., Liang, C., Gong, X., Che, R. (2014). A facile phase transformation method for the preparation of 3D flower-like β-Ni(OH)2/GO/CNTs composite with excellent supercapacitor performance. Journal of Materials Chemistry A, 2 (32), 12692–12696. doi: https://doi.org/10.1039/c4ta02221a
  60. Yang, L.-X., Zhu, Y.-J., Tong, H., Liang, Z.-H., Li, L., Zhang, L. (2007). Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. Journal of Solid State Chemistry, 180 (7), 2095–2101. doi: https://doi.org/10.1016/j.jssc.2007.05.009
  61. Tower, O. F. (1924). Note on Colloidal Nickel Hydroxide. The Journal of Physical Chemistry, 28 (2), 176–178. doi: https://doi.org/10.1021/j150236a009
  62. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
  63. Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472
  64. Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.169461

Downloads

Published

2019-12-02

How to Cite

Kovalenko, V., & Kotok, V. (2019). Synthesis of nickel hydroxide in the presence of acetate ion as a «soft» ligand for application in chemical power sources. Eastern-European Journal of Enterprise Technologies, 6(6 (102), 6–12. https://doi.org/10.15587/1729-4061.2019.185313

Issue

Section

Technology organic and inorganic substances