Change elastic felds of single crystals depending on the structure core breach

Authors

  • Евгений Михайлович Прохоренко Institute of Electrophysics and Radiation Technologies, NAS of Ukraine Gudanova Str., 13 Kharkov, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19183

Keywords:

spent nuclear fuel storage facility, elastic waves, displacement fields, integral equations, Green’s function

Abstract


The paper is related to the issues of spent nuclear fuel (SNF) storage and radioactive waste (RW) disposal. One of the aspects of changing the structure of materials when exposed to the charged-particle beam was theoretically considered. This situation is realized in the walls of SNF storage facilities and rocks, surrounding the RW storage facilities. To solve the problem of describing the geometry of the breach core, distortions around it, integral equations of elastic waves were applied. The equations, similar to the proposed are widely used in the electrodynamics when solving the problems of electromagnetic wave propagation in waveguides and their scattering on inhomogeneities. The problem was solved by numerical methods. It was assumed that the defect had the ellipsoidal shape. The displacement fields around the core of breach cluster depending on the size of this core were found. The sizes of the core are used in the given form - the ratio of semi-axes. Single crystals of cubic structure were studied. Tungsten and gold were considered as real materials. The displacement fields on their own axes <010> and <001> were counted. The areas of breach core sizes, at which they are stable and steady, were defined. The side ratio, when the stress fields around the cluster of the breach core have such orientation, which leads to the compression and reduction of the central zone of the breach, was found. Further, this can cause the core collapse. Taking into account the needs of the waste storage, such breaches are preferable since they reduce the defect formation in the material, surrounding the source of ionizing radiation.

Author Biography

Евгений Михайлович Прохоренко, Institute of Electrophysics and Radiation Technologies, NAS of Ukraine Gudanova Str., 13 Kharkov, Ukraine, 61002

Ph.D (physical mathematical sci.), Senior scientist

References

  1. Прохоренко, Е. М. Вывод интегральных уравнений, описывающих рассеяние упругих волн в анизотропной среде. [Текст] / Е. М. Прохоренко. // Восточно-европейский журнал передовых технологий. – 2012. – №2/10(56). – С. 52-55.
  2. Хижняк, Н. А. Интегральные уравнения макроскопической электродинамики. [Текст] / Н. А. Хижняк. – Київ: Наукова думка, 1986. – 280с.
  3. Mahan, D. Gerald. Many Particle Physics [Текст] / Gerald D. Mahan. – N.Y.: Plenum Publishers, 2000. – 784 p.
  4. Wu, S. Y. General Recursive Relation for the Calculation of the Local Green's Function. [Текст] / S. Y. Wu, J. A. Cocks, C. S. Jayanthi. // Physical Review B. – 1994. – №49. – Р.7957
  5. Тихонов, А. Н. Уравнения математической физики. [Текст] / А. Н. Тихонов, А. А. Самарский – М.: Наука, 1972. – 735с.
  6. Doniach, S. Green's Functions for Solid State Physicists. [Текст] / S. Doniach, E. H. Sondheimer. – N. Y: Imperial Colege Press, 2004. – 312 p.
  7. Phillips, P. Advanced Solid State Physics. [Текст] / P. Phillips. – Cambridge: University Press,2012. – 402 p.
  8. Чапля, Є. Я. Математичне моделювання дифузійних процесів у випадкових і регулярних структурах. [Текст] / Є. Я. Чапля, О. Ю. Чернуха. – Київ: Наукова думка, 2009. – 303с.
  9. Лифшиц, И. М. Построение тензора Грина для основного уравнения теории упругости в случае неограниченной упруго-анизотропной среды. [Текст] / И. М. Лифшиц, Л. Н. Розенцвейг. // ЖЭТФ. – 1947. – №17.– Т.9. – С. 783-791.
  10. Лифшиц, И. М. К теории упругих свойств поликристаллов. [Текст] / И. М. Лифшиц, Л. Н. Розенцвейг. // ЖЭТФ. – 1946. – №16.– Т.10. – С. 967-980.
  11. Муратов, Р. З. Потенциалы эллипсоида. [Текст] / Р. З. Муратов. – М.: Атомиздат, 1976. – 286с.
  12. Prokhorenko, E. M. (2012). Conclusion of integral equalizations, describing dispersion of resilient waves in an anisotropic environment. Eastern-Europeаn journal of Enterprise Technologies, 2/10(56), 52-55.
  13. Khizhnyak, N.A. (1986). Integral equations of macroscopic electrodynamics. Scientific thought, 280.
  14. Mahan, D.Gerald. (2000). Many Particle Physics. Plenum Publishers, 784.
  15. Wu, S.Y., Cocks, J.A., Jayanthi, C.S. (1994). General Recursive Relation for the Calculation of the Local Green's Function. Physical Review B., 49, 7957.
  16. Tikhonov, A. N., Samarskiy, A. A. (1972). Equalizations of mathematical physics, 735.
  17. Doniach, S., Sondheimer, E.H. (2004). Green's Functions for Solid State Physicists. Imperial Colege Press, 312.
  18. Phillips, P. (2012). Advanced Solid State Physics. Cambridge: University Press, 402.
  19. Chaplya, Ya. I., Chernukha, O. Yu. (2009). A mathematical design of diffusive processes is in casual and regular structures. Scientific thought, 303.
  20. Lifshits, I.M., Rozentsveyg, L.N. (1947). Construction of the Green's tensor for the basic equations of the theory of elasticity in the case of an unbounded elastically anisotropic media environment. JETF, №17, V.9, 783-791.
  21. Lifshits, I.M., Rozentsveyg, L.N. (1946). On the theory of elastic properties of polycrystal. JETF, №16, V.10, 967-980.
  22. Muratov, R.Z. (1976).Potentials of ellipsoid. Atomizdat, 286.

Published

2013-12-17

How to Cite

Прохоренко, Е. М. (2013). Change elastic felds of single crystals depending on the structure core breach. Eastern-European Journal of Enterprise Technologies, 6(5(66), 28–31. https://doi.org/10.15587/1729-4061.2013.19183

Issue

Section

Applied physics