Зміна пружних полів монокристалів в залежності від структури ядра порушення
DOI:
https://doi.org/10.15587/1729-4061.2013.19183Ключові слова:
сховище відпрацьованого ядерного палива, пружні хвилі, поля зміщення, інтегральні рівняння, функція ГрінаАнотація
За допомогою чисельних методів отримано залежність полів зсуву від співвідношення геометричних розмірів ядра кластера порушень. В якості аналітичної бази, для розрахункових операцій, використовували уявлення полів зсуву в інтегральній формі із застосуванням рівнянь теорії пружності. Досліджувалась зміна зсуву пружних полів легованих монокристалів кубічної структури (W, Au), які містять протяжні дефекти.
Посилання
- Прохоренко, Е. М. Вывод интегральных уравнений, описывающих рассеяние упругих волн в анизотропной среде. [Текст] / Е. М. Прохоренко. // Восточно-европейский журнал передовых технологий. – 2012. – №2/10(56). – С. 52-55.
- Хижняк, Н. А. Интегральные уравнения макроскопической электродинамики. [Текст] / Н. А. Хижняк. – Київ: Наукова думка, 1986. – 280с.
- Mahan, D. Gerald. Many Particle Physics [Текст] / Gerald D. Mahan. – N.Y.: Plenum Publishers, 2000. – 784 p.
- Wu, S. Y. General Recursive Relation for the Calculation of the Local Green's Function. [Текст] / S. Y. Wu, J. A. Cocks, C. S. Jayanthi. // Physical Review B. – 1994. – №49. – Р.7957
- Тихонов, А. Н. Уравнения математической физики. [Текст] / А. Н. Тихонов, А. А. Самарский – М.: Наука, 1972. – 735с.
- Doniach, S. Green's Functions for Solid State Physicists. [Текст] / S. Doniach, E. H. Sondheimer. – N. Y: Imperial Colege Press, 2004. – 312 p.
- Phillips, P. Advanced Solid State Physics. [Текст] / P. Phillips. – Cambridge: University Press,2012. – 402 p.
- Чапля, Є. Я. Математичне моделювання дифузійних процесів у випадкових і регулярних структурах. [Текст] / Є. Я. Чапля, О. Ю. Чернуха. – Київ: Наукова думка, 2009. – 303с.
- Лифшиц, И. М. Построение тензора Грина для основного уравнения теории упругости в случае неограниченной упруго-анизотропной среды. [Текст] / И. М. Лифшиц, Л. Н. Розенцвейг. // ЖЭТФ. – 1947. – №17.– Т.9. – С. 783-791.
- Лифшиц, И. М. К теории упругих свойств поликристаллов. [Текст] / И. М. Лифшиц, Л. Н. Розенцвейг. // ЖЭТФ. – 1946. – №16.– Т.10. – С. 967-980.
- Муратов, Р. З. Потенциалы эллипсоида. [Текст] / Р. З. Муратов. – М.: Атомиздат, 1976. – 286с.
- Prokhorenko, E. M. (2012). Conclusion of integral equalizations, describing dispersion of resilient waves in an anisotropic environment. Eastern-Europeаn journal of Enterprise Technologies, 2/10(56), 52-55.
- Khizhnyak, N.A. (1986). Integral equations of macroscopic electrodynamics. Scientific thought, 280.
- Mahan, D.Gerald. (2000). Many Particle Physics. Plenum Publishers, 784.
- Wu, S.Y., Cocks, J.A., Jayanthi, C.S. (1994). General Recursive Relation for the Calculation of the Local Green's Function. Physical Review B., 49, 7957.
- Tikhonov, A. N., Samarskiy, A. A. (1972). Equalizations of mathematical physics, 735.
- Doniach, S., Sondheimer, E.H. (2004). Green's Functions for Solid State Physicists. Imperial Colege Press, 312.
- Phillips, P. (2012). Advanced Solid State Physics. Cambridge: University Press, 402.
- Chaplya, Ya. I., Chernukha, O. Yu. (2009). A mathematical design of diffusive processes is in casual and regular structures. Scientific thought, 303.
- Lifshits, I.M., Rozentsveyg, L.N. (1947). Construction of the Green's tensor for the basic equations of the theory of elasticity in the case of an unbounded elastically anisotropic media environment. JETF, №17, V.9, 783-791.
- Lifshits, I.M., Rozentsveyg, L.N. (1946). On the theory of elastic properties of polycrystal. JETF, №16, V.10, 967-980.
- Muratov, R.Z. (1976).Potentials of ellipsoid. Atomizdat, 286.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2014 Евгений Михайлович Прохоренко
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.