Modeling of traffic flows in the justification of projects of road construction in conditions of concession

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.193463

Keywords:

toll, road construction concessions, traffic flow, toll road, road construction

Abstract

A method for studying the expected traffic flow distribution between toll and alternative roads based on user behavior principles is proposed. It is assumed that the user’s behavior is rational: he always chooses the most suitable option. The proposed model takes into account the cost of fuel and lubricants, the time and toll of toll and alternative routes. This means that if the cost of toll and alternative roads is the same, the user will not care which route to choose. By changing the toll for 1 km, it is possible to affect the cost of the “expenses for the toll route” component and the corresponding traffic flow. Saturation of the road with vehicles will occur until, due to the complication of traffic on it, the total costs exceed those when driving another road.

Analytical models are developed and proposed for:

1) toll determination;

2) traffic flow distribution between toll and alternative roads.

The models provided information on the expected traffic flow distribution between toll and alternative routes. It is necessary for:

1) economic justification of project attractiveness for private investors and project feasibility under concession;

2) determination of traffic intensity, below which it is impractical for the authorities to set concession payments under the concession agreement.

The use of the models proposed by the authors is presented on the materials of the project of the construction phase of the Great Kyiv Ring Road (Ukraine)

Author Biographies

Nataliia Bondar, National Transport University M. Omelianovycha-Pavlenka, 1, Kyiv, Ukraine, 01010

Doctor of Economic Sciences, Associate Professor

Department of Economics

Stanislav Gendek, Rzeszow University of Technology Warsaw Rebels alley, 12, Rzeszow, Poland, 35-959

Doctor of Economic Sciences, Professor

Department of Economics

Oksana Karpenko, State University of Infrastructure and Technologies Ivana Ohienka str., 19, Kyiv, Ukraine, 03049

Doctor of Economic Sciences, Professor

Department of Management, Public Administration and Administration

Tamara Navrotskaya, National Transport University M. Omelianovycha-Pavlenka, 1, Kyiv, Ukraine, 01010

PhD, Associate Professor

Department of Management

Victoria Sukmaniuk, National Transport University M. Omelianovycha-Pavlenka, 1, Kyiv, Ukraine, 01010

Senior Lecturer

Department of Management

References

  1. Dehghan Shabani, Z., Safaie, S. (2018). Do transport infrastructure spillovers matter for economic growth? Evidence on road and railway transport infrastructure in Iranian provinces. Regional Science Policy & Practice, 10 (1), 49–63. doi: https://doi.org/10.1111/rsp3.12114
  2. Karpenko, O. O., Palyvoda, O. M., Bondar, N. M. (2018). Modelling the integral performance of transport and logistics clusters. Scientific Bulletin of Polissia, 2 (1 (13)), 155–160. doi: https://doi.org/10.25140/2410-9576-2018-2-1(13)-155-160
  3. Market Update. Review of the European PPP Market in 2018. The European PPP Expertise Centre (EPEC), 14.
  4. Public-Private Partnership Monitor (2019). Asian Development Bank, 910. doi: https://doi.org/10.22617/tcs190020-2
  5. Garemo, N., Hjerpe, M., Halleman, B. (2018). A better road to the future: Improving the delivery of road infrastructure across the world. McKinsey&Company, 32. Available at: https://www.mckinsey.com/~/media/mckinsey/industries/capital%20projects%20and%20infrastructure/our%20insights/improving%20the%20delivery%20of%20road%20infrastructure%20across%20the%20world/a-better-road-to-the-future-web-final.ashx
  6. Maslova, S. (2016). UNECE PPP Best Practice Guide for Road Sector. International PPP Forum: “Implementing the United Nations 2030 Agenda for Sustainable Development through effective, people-first Public-Private Partnerships”. Available at: https://www.unece.org/fileadmin/DAM/ceci/documents/2016/PPP/Forum_PPP-SDGs/Presentations/Svetlana_Maslova-Best_Practice_Guide_for_Roads_Sector.pdf
  7. Private Participation in Infrastructure (PPI) – World Bank Group. Available at: https://ppi.worldbank.org/en/snapshots/sector/toll-roads
  8. Robert, J. (2001). Models for the financing of regional infrastructure and development projects, with a particular attention to the countries of Central and Eastern Europe – Public-private partnerships in spatial development policy. European regional planning (CEMAT), No. 63. Available at: https://rm.coe.int/16804895a3
  9. Iyer, K. C., Sagheer, M. (2011). A real options based traffic risk mitigation model for build-operate-transfer highway projects in India. Construction Management and Economics, 29 (8), 771–779. doi: https://doi.org/10.1080/01446193.2011.597412
  10. Ma, G., Du, Q., Wang, K. (2018). A Concession Period and Price Determination Model for PPP Projects: Based on Real Options and Risk Allocation. Sustainability, 10 (3), 706. doi: https://doi.org/10.3390/su10030706
  11. Shvetsov, V. I. (2003). Mathematical Modeling of Traffic Flows. Automation and Remote Control, 64, 1651–1689. doi: https://doi.org/10.1023/A:1027348026919
  12. Ehlert, A., Bell, M. G. H., Grosso, S. (2006). The optimisation of traffic count locations in road networks. Transportation Research Part B: Methodological, 40 (6), 460–479. doi: https://doi.org/10.1016/j.trb.2005.06.001
  13. Sánchez-Cambronero, S., Rivas, A., Barba, R. M., Ruiz-Ripoll, L., Gallego, I., Menéndez, J. M. (2016). A Methodology to Model a Traffic Network Which have their Field Data Obtained by Plate Scanning Technique. Transportation Research Procedia, 18, 341–348. doi: https://doi.org/10.1016/j.trpro.2016.12.046
  14. Soliño, A. S., Lara Galera, A. L., Colín, F. C. (2017). Measuring uncertainty of traffic volume on motorway concessions: a time-series analysis. Transportation Research Procedia, 27, 3–10. doi: https://doi.org/10.1016/j.trpro.2017.12.006
  15. Apronti, D., Ksaibati, K., Gerow, K., Hepner, J. J. (2016). Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods. Journal of Traffic and Transportation Engineering (English Edition), 3 (6), 493–506. doi: https://doi.org/10.1016/j.jtte.2016.02.004
  16. Sperry, B. R., Mahmood, S., Naik, B. (2018). Land Development and Traffic Composition at Rural Interstate Highway Interchanges in Ohio. Journal of Transportation Engineering, Part A: Systems, 144 (7), 04018029. doi: https://doi.org/10.1061/jtepbs.0000154
  17. Horbachov, P., Samchuk, G. (2014). Analysis of transport systems development forecasting method. Eastern-European Journal of Enterprise Technologies, 2 (3 (68)), 29–34. doi: https://doi.org/10.15587/1729-4061.2014.23152
  18. Honcharenko, F. P. (2015). Prohnozuvannia intensyvnosti rukhu avtomobilnymy dorohamy. Avtoshliakhovyk Ukrainy, 1-2, 57–59. Available at: http://nbuv.gov.ua/UJRN/au_2015_1-2_18
  19. MR A.2.1-218-02070915-729:2008. Metodychni rekomendatsiyi z vyznachennia isnuiuchoi ta prohnozuvannia perspektyvnoi intensyvnosti rukhu.
  20. Haghani, M., Shahhoseini, Z., Sarvi, M. (2016). Path sets size, model specification, or model estimation: Which one matters most in predicting stochastic user equilibrium traffic flow? Journal of Traffic and Transportation Engineering (English Edition), 3 (3), 181–191. doi: https://doi.org/10.1016/j.jtte.2015.09.007
  21. Wardrop, J. G. (1952). Road paper. Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers, 1 (3), 325–362. doi: https://doi.org/10.1680/ipeds.1952.11259
  22. McFadden, D. (1974). The measurement of urban travel demand. Journal of Public Economics, 3 (4), 303–328. doi: https://doi.org/10.1016/0047-2727(74)90003-6
  23. Fischer, M. M., Nijkamp, P. (1987). From static towards dynamic discrete choice modelling. Regional Science and Urban Economics, 17 (1), 3–27. doi: https://doi.org/10.1016/0166-0462(87)90066-4
  24. De Carvalho, M. C. M., Dougherty, M. S., Fowkes, A. S., Wardman, M. R. (1998). Forecasting travel demand: a comparison of logit and artificial neural network methods. Journal of the Operational Research Society, 49 (7), 717–722. doi: https://doi.org/10.1057/palgrave.jors.2600590
  25. Dafermos, S. (1980). Traffic Equilibrium and Variational Inequalities. Transportation Science, 14 (1), 42–54. doi: https://doi.org/10.1287/trsc.14.1.42
  26. Nagurney, A. B. (1984). Comparative tests of multimodal traffic equilibrium methods. Transportation Research Part B: Methodological, 18 (6), 469–485. doi: https://doi.org/10.1016/0191-2615(85)90013-x
  27. Smith, M. J. (1979). The existence, uniqueness and stability of traffic equilibria. Transportation Research Part B: Methodological, 13 (4), 295–304. doi: https://doi.org/10.1016/0191-2615(79)90022-5
  28. Dombalyan, A., Kocherga, V., Semchugova, E., Negrov, N. (2017). Traffic Forecasting Model for a Road Section. Transportation Research Procedia, 20, 159–165. doi: https://doi.org/10.1016/j.trpro.2017.01.040
  29. Li, J., Mao, P., Dai, Z., Zhang, J. (2018). Traffic Allocation Mode of PPP Highway Project: A Risk Management Approach. Advances in Civil Engineering, 2018, 1–12. doi: https://doi.org/10.1155/2018/7193948
  30. Musso, A., Piccioni, C., Tozzi, M., Godard, G., Lapeyre, A., Papandreou, K. (2013). Road Transport Elasticity: How Fuel Price Changes can Affect Traffic Demand on a Toll Motorway. Procedia - Social and Behavioral Sciences, 87, 85–102. doi: https://doi.org/10.1016/j.sbspro.2013.10.596
  31. Garcı́a, R., Marı́n, A. (2005). Network equilibrium with combined modes: models and solution algorithms. Transportation Research Part B: Methodological, 39 (3), 223–254. doi: https://doi.org/10.1016/j.trb.2003.05.002
  32. Batista, S. F. A., Zhao, C.-L., Leclercq, L. (2018). Effects of Users’ Bounded Rationality on a Traffic Network Performance: A Simulation Study. Journal of Advanced Transportation, 2018, 1–20. doi: https://doi.org/10.1155/2018/9876598
  33. Li, M., Huang, H.-J., Liu, H. (2018). Stochastic Route Choice Equilibrium Assignment for Travelers with Heterogeneous Regret Aversions. Journal of Management Science and Engineering, 3 (1), 1–15. Available at: https://www.sciencedirect.com/science/article/pii/S2096232019300423
  34. Zhang, Z.-Z., Tang, T.-Q., Huang, H.-J. (2019). Modeling the social-influence-based route choice behavior in a two-route network. Physica A: Statistical Mechanics and Its Applications, 531, 121744. doi: https://doi.org/10.1016/j.physa.2019.121744
  35. De Grange, L., Marechal, M., González, F. (2019). A Traffic Assignment Model Based on Link Densities. Journal of Advanced Transportation, 2019, 1–20. doi: https://doi.org/10.1155/2019/5282879
  36. Cheung, K., Polak, J. W. (2009). A Bayesian approach to modelling uncertainty in transport infrastructure project forecasts. AET. Available at: https://aetransport.org/public/downloads/juHGZ/4104-514ec5ca67ff1.pdf
  37. Semenov, V. V. (2004). Matematicheskoe modelirovanie dinamiki transportnyh potokov megapolisa. Available at: https://keldysh.ru/papers/2004/prep34/prep2004_34.html
  38. M 218-02070915-674:2010. Metodika opredelenie urovnya zagruzhennosti i propusknoy sposobnosti avtomobil'nyh dorog.
  39. Bondar, N. (2014). Justification of fares on toll road carriers for food. Ukrainian Food Journal, 3 (1), 19–25.

Downloads

Published

2020-02-29

How to Cite

Bondar, N., Gendek, S., Karpenko, O., Navrotskaya, T., & Sukmaniuk, V. (2020). Modeling of traffic flows in the justification of projects of road construction in conditions of concession. Eastern-European Journal of Enterprise Technologies, 1(4 (103), 33–42. https://doi.org/10.15587/1729-4061.2020.193463

Issue

Section

Mathematics and Cybernetics - applied aspects