Reverse leaching of magnesium from ferronickel slag using alkali solvent NaOH

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.193885

Keywords:

ferronickel, slag, forsterite, magnesium, silica, leaching, reverse leaching, sodium hydroxide, filtrate, residue, % extraction

Abstract

A research based on magnesium extraction of ferronickel slag waste processed by reverse leaching using sodium hydroxide (NaOH) solutions has been carried out. The ferronickel slag has the main compositions of magnesium silicate and iron silicate. The early procedure of the research was the preparation of ferronickel slag grinding using a ball mill until it gets a size of –200 mesh. Secondly, the calcination of ferronickel slags to remove crystal water and increase the size of the porosity so that it would facilitate the leaching process. The next procedure was reverse leaching using sodium hydroxide (NaOH) to dissolve silica. By dissolving the silica, it was expected that the contents of elements such as magnesium and iron would increase in the residue. The variations in this ferronickel slag leaching research were leaching time, solvent concentration and leaching temperature. The reverse leaching of ferronickel slag was carried out with a time variation of 15 to 240 minutes, the temperature of 30 °C, 70 °C, and 100 °C and NaOH concentrations are 9 M, 10 M, and 11 M. The XRD (X-ray diffraction) analysis, (XRF X-ray fluorescence) analysis, SEM (Scanning Electron Microscope) analysis, and ICP-OES (Inductively Coupled Plasma) analysis were used to observe the initial characteristics of the ferronickel slag and the results after the leaching process. The characterization result towards ferronickel slag samples by XRD analysis shows that the compositions of the dominant compounds are forsterite (Mg2SiO4), enstatite (MgSiO3) and fayalite (Fe2SiO4). Moreover, the result is also supported by XRF analysis and SEM mapping analysis. The quantitative analysis of XRF shows that ferronickel slag contains 45.69 % of SiO2, 29.32 % of MgO and 16.5 % of Fe2O3. The results of the SEM mapping analysis show that Mg, Si, Fe and O bond together that indicates the presence of magnesium silicate and iron silicate. The highest percentage of magnesium extraction is 73.10 % under experimental temperature conditions of 100 °C for 240 minutes, 10 M of solvent concentration and 300 rpm of stirring speed. Increasing percentage of magnesium extraction is caused by the dissolution of silica in the leaching process. The dissolution of silica is proved by the existence of magnesium hydroxide and iron(II) hydroxide in the residue that is shown by the XRD analysis. It resulted in the MgO content in the residue increase significantly to 42.8 % as shown by the XRF analysis. Moreover, the SEM mapping analysis shows that Mg and O bond together that indicated the presence of MgO. It also can be determined that MgO is dominant

Supporting Agencies

  • The author would like to thank the Ministry of Research and Higher Education as a provider of scholarships and financial support through the Doctoral Dissertation Research Grant with contract number 234/PKS/R/UI/2019. In addition
  • this research was also s

Author Biographies

Agus Budi Prasetyo, Universitas Indonesia Kampus Baru UI Depok, Jawa Barat, Indonesia, 16424

Master of Engineering, Doctorate Candidate

Department of Metallurgy and Material Engineering

Rahadian Darmawansyah, Universitas Sultan Ageng Tirtayasa Cilegon Banten, Indonesia

Bachelor of Engineering

Department of Metallurgy Engineering

Wahyu Mayangsari, Universitas Indonesia Kampus Baru UI Depok, Jawa Barat, Indonesia, 16424

Master Candidate

Department of Metallurgy and Material Engineering

Eni Febriana, Indonesia Institute of Sciences Building 470, Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Indonesia

Doctor of Engineering, Professor

Research Center of Metallurgy and Material

Sulaksana Permana, Universitas Indonesia Kampus Baru UI Depok, Jawa Barat, Indonesia, 16424

Doctor of Engineering

Department of Metallurgy and Material Engineering

Ahmad Maksum, Politeknik Negeri Jakarta Depok 16424, Indonesia

Doctor of Engineering

Department of Mechanical Engineering

Soesaptri Oediyani, Universitas Sultan Ageng Tirtayasa Cilegon Banten, Indonesia

Master of Engineering

Department of Metallurgy Engineering

Florentinus Firdiyono, Indonesia Institute of Sciences Building 470, Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Indonesia

Doctor of Engineering, Professor

Research Center of Metallurgy and Material

Johny Wahyuadi Soedarsono, Universitas Indonesia Kampus Baru UI Depok, Jawa Barat, Indonesia, 16424

Doctor of Engineering, Professor

Department of Metallurgy and Material Engineering

References

  1. Permana, S., Vincia, S. F., Amilia, A., Maksum, A., Widana, K. S., Soedarsono, J. W. (2018). Enrichment on Bangka tin slag’s tantalum and niobium oxide contents through non-fluoride process. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 56–64. doi: https://doi.org/10.15587/1729-4061.2018.129914
  2. Piatak, N. M. (2018). Environmental Characteristics and Utilization Potential of Metallurgical Slag. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, 487–519. doi: https://doi.org/10.1016/b978-0-444-63763-5.00020-3
  3. Ma, N., Houser, J. B. (2014). Recycling of steelmaking slag fines by weak magnetic separation coupled with selective particle size screening. Journal of Cleaner Production, 82, 221–231. doi: https://doi.org/10.1016/j.jclepro.2014.06.092
  4. Prasetyo, A. B., Maksum, A., Soedarsono, J. W., Firdiyono, F. (2019). Thermal characteristics of ferronickel slag on roasting process with addition of sodium carbonate (Na2CO3). IOP Conference Series: Materials Science and Engineering, 541, 012037. doi: https://doi.org/10.1088/1757-899x/541/1/012037
  5. Gu, F., Zhang, Y., Peng, Z., Su, Z., Tang, H., Tian, W. et. al. (2019). Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Journal of Hazardous Materials, 374, 83–91. doi: https://doi.org/10.1016/j.jhazmat.2019.04.002
  6. Huang, Y., Wang, Q., Shi, M. (2017). Characteristics and reactivity of ferronickel slag powder. Construction and Building Materials, 156, 773–789. doi: https://doi.org/10.1016/j.conbuildmat.2017.09.038
  7. Saha, A. K., Sarker, P. K. (2017). Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: Mechanical properties and leaching study. Journal of Cleaner Production, 162, 438–448. doi: https://doi.org/10.1016/j.jclepro.2017.06.035
  8. Choi, Y. C., Choi, S. (2015). Alkali–silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Construction and Building Materials, 99, 279–287. doi: https://doi.org/10.1016/j.conbuildmat.2015.09.039
  9. Gu, F., Peng, Z., Zhang, Y., Tang, H., Ye, L., Tian, W. et. al. (2018). Facile Route for Preparing Refractory Materials from Ferronickel Slag with Addition of Magnesia. ACS Sustainable Chemistry & Engineering, 6 (4), 4880–4889. doi: https://doi.org/10.1021/acssuschemeng.7b04336
  10. Tangahu, B. V., Warmadewanthi, I., Saptarini, D., Pudjiastuti, L., Tardan, M. A. M., Luqman, A. (2015). Ferronickel Slag Performance from Reclamation Area in Pomalaa, Southeast Sulawesi, Indonesia. Advances in Chemical Engineering and Science, 05 (03), 408–412. doi: https://doi.org/10.4236/aces.2015.53041
  11. Maragkos, I., Giannopoulou, I. P., Panias, D. (2009). Synthesis of ferronickel slag-based geopolymers. Minerals Engineering, 22 (2), 196–203. doi: https://doi.org/10.1016/j.mineng.2008.07.003
  12. Patrick, J., Prasetyo, A. B., Munir, B., Maksum, A., Soedarsono, J. W. (2018). The effect of addition of sodium sulphate (Na2SO4) to nickel slag pyrometallurgical process with temperature and additives ratio as variables. E3S Web of Conferences, 67, 03053. doi: https://doi.org/10.1051/e3sconf/20186703053
  13. Pangaribuan, R. H., Patrick, J., Prasetyo, A. B., Maksum, A., Munir, B., Soedarsono, J. W. (2018). The effect of NaOH (natrium hydroxide) to slag nickel pyrometallurgy in different temperature and additive ratio. E3S Web of Conferences, 67, 03052. doi: https://doi.org/10.1051/e3sconf/20186703052
  14. Perederiy, I. (2011). Dissolution of Valuable Metals from Nickel Smelter Slags by Means of High Pressure Oxidative Acid Leaching. University of Toronto, 122.
  15. Demotica, J. S., Jr., R. F. A., Malaluan, R. M., Demayo, C. G. (2012). Characterization and Leaching Assessment of Ferronickel Slag from a Smelting Plant in Iligan City, Philippines. International Journal of Environmental Science and Development, 3 (5), 470–474. doi: https://doi.org/10.7763/ijesd.2012.v3.269
  16. Survey, G. (2016). Mineral commodity summaries 2016. 2016: Government Printing Office.
  17. Royani, A., Sulistiyono, E., Prasetiyo, A. B., Subagja, R. (2018). Extraction of magnesium from calcined dolomite ore using hydrochloric acid leaching. doi: https://doi.org/10.1063/1.5038299
  18. Setyabrata, A. C., Maksum, A., Prasetyo, A. B., Priyono, B., Wahyuadi Soedarsono, J. (2019). Effect of Sodium Carbonate on the Reduction Process of Nickel Slag from Sulawesi. IOP Conference Series: Materials Science and Engineering, 553, 012028. doi: https://doi.org/10.1088/1757-899x/553/1/012028
  19. Huang, F., Liao, Y., Zhou, J., Wang, Y., Li, H. (2015). Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution. Separation and Purification Technology, 156, 572–581. doi: https://doi.org/10.1016/j.seppur.2015.10.051
  20. Xiao, Q., Chen, Y., Gao, Y., Xu, H., Zhang, Y. (2010). Leaching of silica from vanadium-bearing steel slag in sodium hydroxide solution. Hydrometallurgy, 104 (2), 216–221. doi: https://doi.org/10.1016/j.hydromet.2010.06.007
  21. Mufakhir, F. R., Mubarok, M. Z., Ichlas, Z. T. (2018). Leaching of silicon from ferronickel (FeNi) smelting slag with sodium hydroxide solution at atmospheric pressure. IOP Conference Series: Materials Science and Engineering, 285, 012003. doi: https://doi.org/10.1088/1757-899x/285/1/012003
  22. Mubarok, M. Z., Yudiarto, A. (2017). Synthesis of Magnesium Oxide from Ferronickel Smelting Slag Through Hydrochloric Acid Leaching-Precipitation and Calcination. Energy Technology 2017, 247–258. doi: https://doi.org/10.1007/978-3-319-52192-3_24
  23. Chu, Y.-S., Lim, Y.-R., Park, H.-B., Song, H., Lee, J.-K., Lee, S.-H. (2010). Extraction of Mg ion and Fabrication of Mg Compound from Ferro-Nickel Slag. Journal of the Korean Ceramic Society, 47 (6), 613–617. doi: https://doi.org/10.4191/kcers.2010.47.6.613
  24. Son, H.-J., Lee, W.-K. (2015). Leaching Characteristics of Magnesium from Mine Residues by H2SO4 and HNO3. Proceedings of the World Congress on New Technologies.
  25. Song, H.-Y., Seo, J.-B., Kang, S.-K., Kim, I.-D., Choi, B.-W., Oh, K.-J. (2014). CO2Fixation by Magnesium Hydroxide from Ferro-Nickel Slag. Clean Technology, 20 (1), 42–50. doi: https://doi.org/10.7464/ksct.2014.20.1.042
  26. Stopic, S., Dertmann, C., Koiwa, I., Kremer, D., Wotruba, H., Etzold, S. et. al. (2019). Synthesis of Nanosilica via Olivine Mineral Carbonation under High Pressure in an Autoclave. Metals, 9 (6), 708. doi: https://doi.org/10.3390/met9060708
  27. Zhang, X., Gu, F., Peng, Z., Wang, L., Tang, H., Rao, M. et. al. (2019). Recovering Magnesium from Ferronickel Slag by Vacuum Reduction: Thermodynamic Analysis and Experimental Verification. ACS Omega, 4 (14), 16062–16067. doi: https://doi.org/10.1021/acsomega.9b02262
  28. Raza, N., Raza, W., Madeddu, S., Agbe, H., Kumar, R. V., Kim, K.-H. (2018). Synthesis and characterization of amorphous precipitated silica from alkaline dissolution of olivine. RSC Advances, 8 (57), 32651–32658. doi: https://doi.org/10.1039/c8ra06257a
  29. Habashi, F. (1997). Handbook of extractive metallurgy. Wiley-Vch.

Downloads

Published

2020-02-29

How to Cite

Prasetyo, A. B., Darmawansyah, R., Mayangsari, W., Febriana, E., Permana, S., Maksum, A., Oediyani, S., Firdiyono, F., & Soedarsono, J. W. (2020). Reverse leaching of magnesium from ferronickel slag using alkali solvent NaOH. Eastern-European Journal of Enterprise Technologies, 1(12 (103), 6–14. https://doi.org/10.15587/1729-4061.2020.193885

Issue

Section

Materials Science