Synthesis of high-effective steel corrosion inhibitors in water-oil mixtures
DOI:
https://doi.org/10.15587/1729-4061.2020.194315Keywords:
corrosion inhibitor, imidazoline, mineralized waters, optimal doseAbstract
It is a relevant and practically important task for environmental protection to devise effective means to protect metals against corrosion in aggressive media containing water, petroleum products, carbolic acids, and mineral salts. To stop corrosion, corrosion inhibitors are used that must be constantly improved and whose composition must be properly adjusted. The main drawback of the highly effective inhibitors based on alkyl imidazolines, a mixture of alkyl imidazolines with alkyl pyridinium and/or quaternary ammonium compounds soluble in a methanol medium, is their high prices at relatively significant consumption in the corrosive environment. This paper reports the synthesis of steel corrosion inhibitors in oil-containing aqueous environments that meet the stricter ecological and economic requirements. It has been shown that increasing the level of water mineralization improves the corrosive activity of aqueous environments relative to unalloyed steels. The presence of carbon dioxide, hydrogen sulfide, or carboxylic acids leads to the oxidation of water-oil mixtures resulting in the increased rate of steel corrosion. We have studied the effectiveness of the synthesized inhibitors based on oil and polyethylene polyamines containing imidazolines. At a temperature of 80 °C, the mixture that contained 200 cm3of a 3 % sodium chloride solution, 800 cm3of oil, and at the concentration of acetic acid of 0.5 and 3.0 g/dm3 at the inhibitor dose of 50 mg/dm3, has reached the degree of protection of steel against corrosion at the level of 90–92 %. Based on a full factorial experiment, the regression equation has been derived that makes it possible to easily enough calculate an optimal dose of the steel corrosion inhibitor in water-oil mixtures. It has been shown that the synthesized inhibitor shows prospects for protecting metals against corrosion both in the mineralized waters containing oil and in the presence of petroleum products containing waterReferences
- Rana, A., Arfaj, M. K., Saleh, T. A. (2019). Advanced developments in shale inhibitors for oil production with low environmental footprints – A review. Fuel, 247, 237–249. doi: https://doi.org/10.1016/j.fuel.2019.03.006
- Vasyliev, G., Brovchenko, A., Herasymenko, Y. (2013). Comparative Assessment of Corrosion Behaviour of Mild Steels 3, 20 and 08KP in Tap Water. Chemistry & Chemical Technology, 7 (4), 477–482. doi: https://doi.org/10.23939/chcht07.04.477
- Gomelya, N. D., Trus, I. N., Nosacheva, Y. V. (2014). Water purification of sulfates by liming when adding reagents containing aluminum. Journal of Water Chemistry and Technology, 36 (2), 70–74. doi: https://doi.org/10.3103/s1063455x14020040
- Gomelya, M., Trus, I., Shabliy, T. (2014). Application of Auminium Coagulants for the Removal of Sulphate from Mine Water. Chemistry & Chemical Technology, 8 (2), 197–203. doi: https://doi.org/10.23939/chcht08.02.197
- Gomelya, M. D., Trus, I. M., Radovenchyk, I. V. (2014). Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 100–105.
- Rajasekar, A. (2016). Biodegradation of Petroleum Hydrocarbon and Its Influence on Corrosion with Special Reference to Petroleum Industry. Environmental Footprints and Eco-Design of Products and Processes, 307–336. doi: https://doi.org/10.1007/978-981-10-0201-4_9
- Muthukumar, N. (2014). Petroleum Products Transporting Pipeline Corrosion – A Review. The Role of Colloidal Systems in Environmental Protection, 527–571. doi: https://doi.org/10.1016/b978-0-444-63283-8.00021-1
- Vasyliev, G., Vorobiova, V. (2019). Rape grist extract (Brassica napus) as a green corrosion inhibitor for water systems. Materials Today: Proceedings, 6, 178–186. doi: https://doi.org/10.1016/j.matpr.2018.10.092
- Vorobyova, V., Chygyrynets’, O., Skiba, M., Trus, I., Frolenkova, S. (2018). Grape Pomace Extract as Green Vapor Phase Corrosion Inhibitor. Chemistry & Chemical Technology, 12 (3), 410–418. doi: https://doi.org/10.23939/chcht12.03.410
- Alibakhshi, E., Ramezanzadeh, M., Haddadi, S. A., Bahlakeh, G., Ramezanzadeh, B., Mahdavian, M. (2019). Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution. Journal of Cleaner Production, 210, 660–672. doi: https://doi.org/10.1016/j.jclepro.2018.11.053
- Asadi, N., Ramezanzadeh, M., Bahlakeh, G., Ramezanzadeh, B. (2019). Utilizing Lemon Balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: A detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study. Journal of the Taiwan Institute of Chemical Engineers, 95, 252–272. doi: https://doi.org/10.1016/j.jtice.2018.07.011
- Vorobyova, V., Chygyrynets´, O., Skiba, M., Zhuk, T., Kurmakova, І., Bondar, О. (2018). A comprehensive study of grape pomace extract and its active components as effective vapour phase corrosion inhibitor of mild steel. International Journal of Corrosion and Scale Inhibition, 7 (2), 185–202. doi: https://doi.org/10.17675/2305-6894-2018-7-2-6
- Vorobyova, V. I., Skiba, M. I., Trus, I. M. (2019). Apricot pomaces extract (Prunus Armeniaca L.) as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution. International Journal of Corrosion and Scale Inhibition, 8 (4), 1060–1083. doi: https://doi.org/10.17675/2305-6894-2019-8-4-15
- Wang, L., Zhang, C., Xie, H., Sun, W., Chen, X., Wang, X. et. al. (2015). Calcium alginate gel capsules loaded with inhibitor for corrosion protection of downhole tube in oilfields. Corrosion Science, 90, 296–304. doi: https://doi.org/10.1016/j.corsci.2014.10.026
- Mady, M. F., Charoensumran, P., Ajiro, H., Kelland, M. A. (2018). Synthesis and Characterization of Modified Aliphatic Polycarbonates as Environmentally Friendly Oilfield Scale Inhibitors. Energy & Fuels, 32 (6), 6746–6755. doi: https://doi.org/10.1021/acs.energyfuels.8b01168
- Deyab, M. A. (2018). Corrosion inhibition of heat exchanger tubing material (titanium) in MSF desalination plants in acid cleaning solution using aromatic nitro compounds. Desalination, 439, 73–79. doi: https://doi.org/10.1016/j.desal.2018.04.005
- Shabliy, T., Nosachova, J., Radovenchik, Y., Vember, V. (2017). Study of effectiveness of heavy metals ions as the inhibitors of steel corrosion. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 10–17. doi: https://doi.org/10.15587/1729-4061.2017.106974
- Zaky, M. T., Nessim, M. I., Deyab, M. A. (2019). Synthesis of new ionic liquids based on dicationic imidazolium and their anti-corrosion performances. Journal of Molecular Liquids, 290, 111230. doi: https://doi.org/10.1016/j.molliq.2019.111230
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Nikolai Gomelya, Inna Trus, Olena Stepova, Oleksandr Kyryliuk, Olena Hlushko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.