Development of measuring system for determining life-threatening cardiac arrhythmias in a patient’s free activity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.197079

Keywords:

non-invasive cardiac diagnostic system, portable cardio analyzer, сardiac signal processing

Abstract

Cardiovascular diseases continue to be the main cause of mortality. According to the official source, over the past three years in Kazakhstan, an average of 179,200 people dies from the coronary disease per year. 1,360,000 people suffer from this disease, that is, almost every twelfth Kazakhstani today suffers from coronary heart disease. An average of 272,000 people are admitted to hospitals annually with an acute heart attack [1]. To minimize damage to the population and medicine, timely diagnosis is necessary, which reduces the cost of subsequent treatment.

The paper considers the system of non-invasive cardiac diagnostics, based on a biophysical approach. The system allows to fill the existing gap between electrophysiology of the heart and the most common methods of analysis of the electromagnetic field of the heart for diagnostic purposes. The developed system of non-invasive cardiac diagnosis uses the latest advances in information technology that allows to record, collect, store and process cardiographic information.

The product allows you to monitor the state of human health around the clock with the identification of pathologies and the determination of their development trends and with the formation of alarm alerts indicating the location of the subscriber and instant analysis of the physiological parameters of the heart. Such experience can be successfully used for personal monitoring of human health, regardless of his location.

The developed sample of the measuring system increases the diagnostic efficiency of the medical services by the timely determination of dangerous cardiac arrhythmias

Supporting Agency

  • The current model of a portable monitoring information-measuring system for determining dangerous cardiac arrhythmias in conditions of free activity was developed on the basis of Satbayev University under the grant program of the Science Fund of the Repub

Author Biographies

Chingiz Alimbayev, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

PhD

Department of Robotics and Engineering Tools of Automation

Zhadyra Alimbayeva, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

PhD

Department of Robotics and Engineering Tools of Automation

Kassymbek Ozhikenov, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

PhD, Head of Department

Department of Robotics and Engineering Tools of Automation

Oleg Bodin, Penza State University Krasnaya str., 40, Penza, Russia, 440026

Doctor of Technical Sciences, Professor

Yerkat Mukazhanov, Zhetysu State University named after I. Zhansugurov Zhansugurova str., 187а, Taldykorgan, Republic of Kazakhstan, 040009

PhD, Associate Professor

References

  1. Statistical data of Medinform LLP, Kazakhstan. Available at: http://www.medinfo.kz/#/stats
  2. Naranjo-Hernández, D., Roa, L. M., Reina-Tosina, J., Barbarov-Rostan, G., Galdámez-Cruz, O. (2017). Smart Device for the Determination of Heart Rate Variability in Real Time. Journal of Sensors, 2017, 1–11. doi: https://doi.org/10.1155/2017/8910470
  3. Safronov, M., Kuzmin, A., Bodin, O., Baranov, V., Trofimov, A., Tychkov, A. (2019). Mobile ECG Monitoring Device with Bioimpedance Measurement and Analysis. 2019 24th Conference of Open Innovations Association (FRUCT). doi: https://doi.org/10.23919/fruct.2019.8711944
  4. Kuzmin, A., Safronov, M., Bodin, O., Prokhorov, S., Stolbova, A. (2017). Mobile ECG monitoring system prototype and wavelet-based arrhythmia detection. 2017 21st Conference of Open Innovations Association (FRUCT). doi: https://doi.org/10.23919/fruct.2017.8250184
  5. Türker, G. F., Tarımer, İ. (2016). Portable ECG design and application based on wireless sensor network. Pamukkale University Journal of Engineering Sciences, 22 (2), 78–84. doi: https://doi.org/10.5505/pajes.2015.08860
  6. Holter Monitor. Poly-Spectrum-Radio. Available at: https://www.medicalexpo.com/prod/neurosoft/product-69506-454318.html
  7. Kompleks dlya telemetricheskoy registratsii EKG «Astrokard® - Telemetriya» 3G. Available at: https://www.astrocard-meditek.ru/index.php?page=prod_10
  8. Oppengeym, A., Shafer, R. (2007). Tsifrovaya obrabotka signalov. Moscow: Tehnosfera, 856.
  9. Rangayan, R. M.; Nemirko, A. P. (Ed.) (2007). Analiz biomeditsinskih signalov. Prakticheskiy podhod. Moscow: FIZMATLIT, 440.
  10. Noro, M., Anzai, D., Wang, J. (2017). Common-mode noise cancellation circuit for wearable ECG. Healthcare Technology Letters, 4 (2), 64–67. doi: https://doi.org/10.1049/htl.2016.0083
  11. He, R., Wang, K., Li, Q., Yuan, Y., Zhao, N., Liu, Y., Zhang, H. (2017). A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization. EURASIP Journal on Advances in Signal Processing, 2017 (1). doi: https://doi.org/10.1186/s13634-017-0519-3
  12. Yupapin, P., Sh Hussain, S., Hadrina, S.-H., Tan, Ting, C.-M., Noor, A. M. et. al. (2012). Acoustic cardiac signals analysis: a Kalman filter-based approach. International Journal of Nanomedicine, 2012 (7), 2873–2881. doi: https://doi.org/10.2147/ijn.s32315
  13. Alimbaev, C. A., Ozhikenov, K. A., Bodin, O. N., Kramm, M. N., Rakhmatullov, F. K., Mukazhanov, Y. B. (2019). System of Non-Invasive Electrocardiac Diagnostics. 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). doi: https://doi.org/10.1109/edm.2019.8823170
  14. Alimbayev, C. A., Bodin, O. N., Ozhikenov, K. A., Mukazhanov, E. B., Alimbayeva, Z. N. (2018). Development of the structure of a multicomponent filter based on the principle of adaptive aggregation of filters. 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). doi: https://doi.org/10.1109/icaict.2018.8747119
  15. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q. et. al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454 (1971), 903–995. doi: https://doi.org/10.1098/rspa.1998.0193
  16. n, S. S.Huang, N. E., She P. (2005). The Hilbert-Huang Transform and Its Applications. World Scientific Publishing Co. Pte. Ltd., 526.
  17. Krivonogov, L. Yu. (2014). Method and algorithms for accurate ECG signal processing based on empirical mode decomposition. Izvestiya Yuzhnogo federal'nogo universiteta. Tehnicheskie nauki, 10 (159), 104–114.
  18. Krivonogov, L. Yu., Egorov, M. S. (2013). Podavlenie vysokochastotnyh pomeh v elektrokardiosignalah na osnove usechennoy empiricheskoy modovoy dekompozitsii. Materialy IV Mezhregion. nauchn. konf. «Aktual'nye problemy meditsinskoy nauki i obrazovaniya». Elektron. nauchn. izd. FGUP NTTS «Informregistr», 485–491.

Downloads

Published

2020-02-29

How to Cite

Alimbayev, C., Alimbayeva, Z., Ozhikenov, K., Bodin, O., & Mukazhanov, Y. (2020). Development of measuring system for determining life-threatening cardiac arrhythmias in a patient’s free activity. Eastern-European Journal of Enterprise Technologies, 1(9 (103), 12–22. https://doi.org/10.15587/1729-4061.2020.197079

Issue

Section

Information and controlling system