Improving the energy efficiency of cyclone dust collectors

Authors

  • Vladimir Ryzhov Open International University of Human Development "Ukraine" Lvivska str., 23, Kyiv, Ukraine, 03115, Ukraine https://orcid.org/0000-0001-7521-6840
  • Sergey Pryiomov Institute of Food Biotechnology and Genomics NAS of Ukraine Osipovsky str., 2-a, Kyiv, Ukraine, 04123, Ukraine
  • Anatoly Tymoshenko Open International University of Human Development "Ukraine" Lvivska str., 23, Kyiv, Ukraine, 03115, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2020.197083

Keywords:

cyclone dust collector, "bypass" pipe, CFD simulation, degree of purification, hydraulic resistance, energy efficiency

Abstract

Our study, aimed at assessing the impact exerted by the inclusion to a low-efficiency cyclone of an additional "bypass" pipe connecting the cyclone's inlet branch pipe and the exhaust pipe, has been established the mechanisms to improve the energy efficiency and the process of purifying air from dust. It has been proven that the increase in the degree of purification is explained by a decrease in the radial flow rate under the exhaust pipe of the cyclone. The decrease in hydraulic resistance is due to a decrease in the flow rate along the inlet branch pipe when the air is fed separately to the body through the inlet branch pipe and the "bypass" pipe. Our experimental study has confirmed that when the cyclone design is supplemented with a "bypass" pipe in the most dangerous area of the cyclone in terms of dust release (under the exhaust pipe), the radial rate of the gas flow that negatively affects purification is reduced. This leads to an increase in the overall degree of purification from dust. The result of analytical calculations and computer simulation by the SolidWorks-2009 software were experimentally confirmed when investigating the effectiveness of dust capture from powdered skimmed milk in an industrial cyclone (a 630-mm diameter) with a "bypass" pipe. Such a cyclone is installed in the system of pneumatical transportation at the spray dryer "CT-500" at Ichnya Milk Powder and Butter Plant (Ukraine). Specifically, it has been established that the removal of dust is reduced almost twice, hydraulic resistance ‒ by 15 %, and the energy efficiency of the cyclone with a "bypass" pipe increases by 2.43 times.

Thus, there is a reason to argue about the possibility of significant energy efficiency improvement of the cyclone with a "bypass" pipe.

This makes it possible to assess the energy efficiency of the cyclone in the early stages of design

Author Biographies

Vladimir Ryzhov, Open International University of Human Development "Ukraine" Lvivska str., 23, Kyiv, Ukraine, 03115

Postgraduate Student

Department of Computer Engineering

Sergey Pryiomov, Institute of Food Biotechnology and Genomics NAS of Ukraine Osipovsky str., 2-a, Kyiv, Ukraine, 04123

Doctor of Technical Sciences, Academician of the Academy of Sciences of Ukraine, Leading Researcher

Department of Industrial and Food Biotechnology

Anatoly Tymoshenko, Open International University of Human Development "Ukraine" Lvivska str., 23, Kyiv, Ukraine, 03115

PhD, Head of Department

Department of Computer Engineering

References

  1. Kaplunov, D. R., Kalayeva, S. Z., Muratova, K. M., Chistyakov, Ya. V. (2018). Analyzing constructions of dust cyclone types for fine-dispersed dust. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o zemle, 2, 49–71.
  2. Azarov, V. N., Sergina, N. M., Ostaali, M., Sakharova, A. A., Kopeikina, A. A. (2019). About some features of the layout of dust cleaning systems with vortex inertial devices with counter-swirling flow. Inzhenerniy vestnik Dona, 1. Available at: http://ivdon.ru/uploads/article/pdf/IVD_124_azarov_sergina_ostaali_kopejkina.pdf_7594e0a567.pdf
  3. Sergina, N. M. (2013). Vihrevye apparaty s zakruchennymi potokami s otsosom iz bunkera zoly v inertsionnyh sistemah pyleulavlivaniya. Al'tenativnaya energetika i ekologiya, 11 (133), 43–46.
  4. Bulygin, Yu. I., Azimova, N. N., Kuptsova, I. S. (2018). Problems of designing dust cleaning equipment in the industry. Bezopasnost' tehnogennyh i prirodnyh sistem, 1-2, 2–12. doi: https://doi.org/10.23947/2541-9129-2018-1-2-2-12
  5. Galich, R. V. (2013). Research, development and embodiment of multifunctional vortex apparatus. Eastern-European Journal of Enterprise Technologies, 3 (7 (63)), 32–40. Available at: http://journals.uran.ua/eejet/article/view/14821/12623
  6. Krasnyy, B. L., Serebryanskiy, D. A. (2017). Sistemy i apparaty dlya ochistki tehnologicheskih i dymovyh gazov ot tverdyh chastits kompanii ZAO «NTTS Bakor». Mezhotraslevoy nauchno-prakticheskiy zhurnal «PYLEGAZOOCHISTKA», 13, 29–33.
  7. Muratova, K. M., Makhnin, A. A., Volodin, N. I., Chistyakov, Y. V. (2017). Treatment of Industrial Dust-Air Flows in Centrifugal-Inertial Apparatuses. Chemical and Petroleum Engineering, 53 (3-4), 185–189. doi: https://doi.org/10.1007/s10556-017-0319-5
  8. Muratova, K. M., Mahnin, A. A., Volodin, N. I., Chistyakov, Ya. V. (2017). Ochistka promyshlennyh pylevozdushnyh potokov v apparatah tsentrobezhno-inertsionnogo tipa. Himicheskoe i neftegazovoe mashinostroenie, 3, 31–34.
  9. Hsiao, T.-C., Chen, D., Greenberg, P. S., Street, K. W. (2011). Effect of geometric configuration on the collection efficiency of axial flow cyclones. Journal of Aerosol Science, 42 (2), 78–86. doi: https://doi.org/10.1016/j.jaerosci.2010.11.004
  10. Karagoz, I., Avci, A., Surmen, A., Sendogan, O. (2013). Design and performance evaluation of a new cyclone separator. Journal of Aerosol Science, 59, 57–64. doi: https://doi.org/10.1016/j.jaerosci.2013.01.010
  11. Park, C.-W., Song, D.-H., Yook, S.-J. (2015). Development of a single cyclone separator with three stages for size-selective sampling of particles. Journal of Aerosol Science, 89, 18–25. doi: https://doi.org/10.1016/j.jaerosci.2015.07.001
  12. Brar, L. S., Sharma, R. P., Elsayed, K. (2015). The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone. Powder Technology, 286, 668–677. doi: https://doi.org/10.1016/j.powtec.2015.09.003
  13. Baltrenas, P., Pranskevicius, M., Venslovas, A. (2015). Optimization of the New Generation Multichannel Cyclone Cleaning Efficiency. Energy Procedia, 72, 188–195. doi: https://doi.org/10.1016/j.egypro.2015.06.027
  14. Chlebnikovas, A., Baltrenas, P. (2017). Research and Analysis of Aggressive Conditions Formation into a Multi Channel Cyclone. Energy Procedia, 113, 69–76. doi: https://doi.org/10.1016/j.egypro.2017.04.018
  15. Li, Q., Xu, W., Wang, J., Jin, Y. (2015). Performance evaluation of a new cyclone separator – Part I experimental results. Separation and Purification Technology, 141, 53–58. doi: https://doi.org/10.1016/j.seppur.2014.10.030
  16. Xiong, Z., Ji, Z., Wu, X. (2014). Development of a cyclone separator with high efficiency and low pressure drop in axial inlet cyclones. Powder Technology, 253, 644–649. doi: https://doi.org/10.1016/j.powtec.2013.12.016
  17. Balestrin, E., Decker, R. K., Noriler, D., Bastos, J. C. S. C., Meier, H. F. (2017). An alternative for the collection of small particles in cyclones: Experimental analysis and CFD modeling. Separation and Purification Technology, 184, 54–65. doi: https://doi.org/10.1016/j.seppur.2017.04.023
  18. Shcherbyna, V. Yu. (2019). Modeling the process of separation in cyclonic wiring apparatus. Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving, 1 (18), 40–51. doi: https://doi.org/10.20535/2617-9741.1.2019.171037
  19. Ryzhov, V. Y., Tymoshenko, A. H., Pryiomov, S. I. (2015). Optymizatsiya systemy ochystky dymovykh haziv. Visnyk Universytetu «Ukraina». Seriya: Informatyka, obchysliuvalna tekhnika ta kibernetyka, 1 (17), 116–129.
  20. Pryiomov, S. I., Ryzhov, I. M., Shulha, S. M., Ryzhov, V. I. (2014). Pat. No. 114500 UA. Vidtsentrovyi pylovlovliuvach. No. a201409341; declareted: 22.08.2014; published: 26.06.2017, Bul. No. 12.
  21. GOST 12.3.018-79. Occupational safety standards system. Ventilation systems. Аerodinamical tests methods.
  22. Trubki napornye modifikatsii NIOGAZ i PITO. Rukovodstvo po ekspluatatsii (2011). Moscow, 15. Available at: https://eco-intech.com/img/AVimg/Brochure/instr%20trubki.pdf
  23. Testo 521/526. Rukovodstvo pol'zovatelya. Available at: https://www.testo.kiev.ua/docs/testo%20521%20testo%20526.pdf
  24. Alyamovskiy, A. A., Sobachkin, A. A., Odintsov, E. V., Haritonovich, A. I., Ponomarev, N. B. (2008). SolidWorks 2007/2008. Komp'yuternoe modelirovanie v inzhenernoy praktike. Sankt-Peterburg, 1038.
  25. Ryzhov, V. (2019). Computer and analytical calculations for optimization of cycle separation of ash. Technology Audit and Production Reserves, 3 (3 (47)), 20–25. doi: https://doi.org/10.15587/2312-8372.2019.179178
  26. Ryzhov, V. (2019). Improvement of the calculation method of cyclone dust collectors. Technology Audit and Production Reserves, 4 (3 (48)), 20–25. doi: https://doi.org/10.15587/2312-8372.2019.180407
  27. NumPy User Guide. Release 1.18.1 Written by the NumPy community.

Downloads

Published

2020-02-29

How to Cite

Ryzhov, V., Pryiomov, S., & Tymoshenko, A. (2020). Improving the energy efficiency of cyclone dust collectors. Eastern-European Journal of Enterprise Technologies, 1(10 (103), 53–62. https://doi.org/10.15587/1729-4061.2020.197083