Підвищення енергоэфективності циклонних пиловловлювачів
DOI:
https://doi.org/10.15587/1729-4061.2020.197083Ключові слова:
циклонний пиловловлювач, «обвідна» труба, CFD-моделювання, ступінь очищення, гідравлічний опір, енергоефективністьАнотація
Проведеними дослідженнями по оцінці впливу введення в малоефективний циклон додаткової «обвідний» труби, що з'єднує вхідний патрубок циклону
і вихлопну трубу, встановлені механізми причин підвищення енергоефективності процесу очищення повітря від пилу. Доведено, що зростання ступеня очищення пояснюється зниженням радіальної швидкості потоку під вихлопною трубою циклону. Зниження гідравлічного опору пояснюється зниженням швидкості потоку у вхідному патрубку при роздільному введенні повітря в корпус-через вхідний патрубок і «обвідну» трубу. Експериментальними дослідженнями підтверджено, що при введенні в конструкцію циклона «обвідний» труби в найбільш небезпечної для виносу пилу області циклону (під вихлопною трубою), знижується негативно впливаючи на очистку радіальна швидкість газового потоку. Це призводить до підвищення загального ступеня очищення від пилу.
Результати аналітичних розрахунків і комп'ютерного моделювання програмою «SolidWorks-2009» експериментально підтверджені при дослідженні ефективності уловлювання пилу сухого знежиреного молока в промисловому циклоні (діаметром 630 мм) з «обвідний» трубою. Такий циклон встановлений в системі пневмотранспорту розпилювальної сушарки «ЦТ-500» Ічнянського заводу сухого молока і масла (Україна).
Зокрема встановлено, що при цьому винесення пилу знижується практично в два рази, гідравлічний опір– на 15%, а енергоефективність циклону з «обвідною» трубою підвищується, практично, в 2,43 рази.
Таким чином, є підстави стверджувати про можливість значного підвищення енергоефективності циклону з «обвідною» трубою.
Завдяки цьому з'являється можливість оцінки підвищення енергоефективності циклону ще на ранніх стадіях проектуванняПосилання
- Kaplunov, D. R., Kalayeva, S. Z., Muratova, K. M., Chistyakov, Ya. V. (2018). Analyzing constructions of dust cyclone types for fine-dispersed dust. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o zemle, 2, 49–71.
- Azarov, V. N., Sergina, N. M., Ostaali, M., Sakharova, A. A., Kopeikina, A. A. (2019). About some features of the layout of dust cleaning systems with vortex inertial devices with counter-swirling flow. Inzhenerniy vestnik Dona, 1. Available at: http://ivdon.ru/uploads/article/pdf/IVD_124_azarov_sergina_ostaali_kopejkina.pdf_7594e0a567.pdf
- Sergina, N. M. (2013). Vihrevye apparaty s zakruchennymi potokami s otsosom iz bunkera zoly v inertsionnyh sistemah pyleulavlivaniya. Al'tenativnaya energetika i ekologiya, 11 (133), 43–46.
- Bulygin, Yu. I., Azimova, N. N., Kuptsova, I. S. (2018). Problems of designing dust cleaning equipment in the industry. Bezopasnost' tehnogennyh i prirodnyh sistem, 1-2, 2–12. doi: https://doi.org/10.23947/2541-9129-2018-1-2-2-12
- Galich, R. V. (2013). Research, development and embodiment of multifunctional vortex apparatus. Eastern-European Journal of Enterprise Technologies, 3 (7 (63)), 32–40. Available at: http://journals.uran.ua/eejet/article/view/14821/12623
- Krasnyy, B. L., Serebryanskiy, D. A. (2017). Sistemy i apparaty dlya ochistki tehnologicheskih i dymovyh gazov ot tverdyh chastits kompanii ZAO «NTTS Bakor». Mezhotraslevoy nauchno-prakticheskiy zhurnal «PYLEGAZOOCHISTKA», 13, 29–33.
- Muratova, K. M., Makhnin, A. A., Volodin, N. I., Chistyakov, Y. V. (2017). Treatment of Industrial Dust-Air Flows in Centrifugal-Inertial Apparatuses. Chemical and Petroleum Engineering, 53 (3-4), 185–189. doi: https://doi.org/10.1007/s10556-017-0319-5
- Muratova, K. M., Mahnin, A. A., Volodin, N. I., Chistyakov, Ya. V. (2017). Ochistka promyshlennyh pylevozdushnyh potokov v apparatah tsentrobezhno-inertsionnogo tipa. Himicheskoe i neftegazovoe mashinostroenie, 3, 31–34.
- Hsiao, T.-C., Chen, D., Greenberg, P. S., Street, K. W. (2011). Effect of geometric configuration on the collection efficiency of axial flow cyclones. Journal of Aerosol Science, 42 (2), 78–86. doi: https://doi.org/10.1016/j.jaerosci.2010.11.004
- Karagoz, I., Avci, A., Surmen, A., Sendogan, O. (2013). Design and performance evaluation of a new cyclone separator. Journal of Aerosol Science, 59, 57–64. doi: https://doi.org/10.1016/j.jaerosci.2013.01.010
- Park, C.-W., Song, D.-H., Yook, S.-J. (2015). Development of a single cyclone separator with three stages for size-selective sampling of particles. Journal of Aerosol Science, 89, 18–25. doi: https://doi.org/10.1016/j.jaerosci.2015.07.001
- Brar, L. S., Sharma, R. P., Elsayed, K. (2015). The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone. Powder Technology, 286, 668–677. doi: https://doi.org/10.1016/j.powtec.2015.09.003
- Baltrenas, P., Pranskevicius, M., Venslovas, A. (2015). Optimization of the New Generation Multichannel Cyclone Cleaning Efficiency. Energy Procedia, 72, 188–195. doi: https://doi.org/10.1016/j.egypro.2015.06.027
- Chlebnikovas, A., Baltrenas, P. (2017). Research and Analysis of Aggressive Conditions Formation into a Multi Channel Cyclone. Energy Procedia, 113, 69–76. doi: https://doi.org/10.1016/j.egypro.2017.04.018
- Li, Q., Xu, W., Wang, J., Jin, Y. (2015). Performance evaluation of a new cyclone separator – Part I experimental results. Separation and Purification Technology, 141, 53–58. doi: https://doi.org/10.1016/j.seppur.2014.10.030
- Xiong, Z., Ji, Z., Wu, X. (2014). Development of a cyclone separator with high efficiency and low pressure drop in axial inlet cyclones. Powder Technology, 253, 644–649. doi: https://doi.org/10.1016/j.powtec.2013.12.016
- Balestrin, E., Decker, R. K., Noriler, D., Bastos, J. C. S. C., Meier, H. F. (2017). An alternative for the collection of small particles in cyclones: Experimental analysis and CFD modeling. Separation and Purification Technology, 184, 54–65. doi: https://doi.org/10.1016/j.seppur.2017.04.023
- Shcherbyna, V. Yu. (2019). Modeling the process of separation in cyclonic wiring apparatus. Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving, 1 (18), 40–51. doi: https://doi.org/10.20535/2617-9741.1.2019.171037
- Ryzhov, V. Y., Tymoshenko, A. H., Pryiomov, S. I. (2015). Optymizatsiya systemy ochystky dymovykh haziv. Visnyk Universytetu «Ukraina». Seriya: Informatyka, obchysliuvalna tekhnika ta kibernetyka, 1 (17), 116–129.
- Pryiomov, S. I., Ryzhov, I. M., Shulha, S. M., Ryzhov, V. I. (2014). Pat. No. 114500 UA. Vidtsentrovyi pylovlovliuvach. No. a201409341; declareted: 22.08.2014; published: 26.06.2017, Bul. No. 12.
- GOST 12.3.018-79. Occupational safety standards system. Ventilation systems. Аerodinamical tests methods.
- Trubki napornye modifikatsii NIOGAZ i PITO. Rukovodstvo po ekspluatatsii (2011). Moscow, 15. Available at: https://eco-intech.com/img/AVimg/Brochure/instr%20trubki.pdf
- Testo 521/526. Rukovodstvo pol'zovatelya. Available at: https://www.testo.kiev.ua/docs/testo%20521%20testo%20526.pdf
- Alyamovskiy, A. A., Sobachkin, A. A., Odintsov, E. V., Haritonovich, A. I., Ponomarev, N. B. (2008). SolidWorks 2007/2008. Komp'yuternoe modelirovanie v inzhenernoy praktike. Sankt-Peterburg, 1038.
- Ryzhov, V. (2019). Computer and analytical calculations for optimization of cycle separation of ash. Technology Audit and Production Reserves, 3 (3 (47)), 20–25. doi: https://doi.org/10.15587/2312-8372.2019.179178
- Ryzhov, V. (2019). Improvement of the calculation method of cyclone dust collectors. Technology Audit and Production Reserves, 4 (3 (48)), 20–25. doi: https://doi.org/10.15587/2312-8372.2019.180407
- NumPy User Guide. Release 1.18.1 Written by the NumPy community.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Vladimir Ryzhov, Sergey Pryiomov, Anatoly Tymoshenko
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.