Performance of cylindrical and planar meso­scale combustor with double narrow slit flame holder for micropower generator

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.198570

Keywords:

cylindrical mesoscale combustor, planar mesoscale combustor, double narrow slit, entrance to average velocity ratio

Abstract

This research compared the performance of a cylindrical mesoscale combustor against two planar mesoscale combustors, which include the shape of the flame front, temperature of the combustor axis and the combustor wall, and the resulting flammability limit. The combustor used has a circular, square and rectangular cross-section. All three combustors have the same cross-section area and combustion chamber volume. The flame holder used is a double narrow slit. The fuel used is liquefied petroleum gas with a pure oxygen oxidizer. The experiment results showed that the cylindrical combustor produces a more even flame shape that fills the combustion chamber and there is no clear separation between the sides of the flame on each side of the narrow slit. A high ratio of the entrance to average velocity results in a large adverse pressure gradient which generates vortex and recirculation behind the flame holder which gives the mixture a longer chance in the combustion chamber (prolonged residence time). The flame front shape affects the temperature of the combustor axis. The flame front shape that fills the entire combustion chamber has a higher flame temperature than the separate flame front shape. The circular combustor has the highest average axis temperature, but it has the lowest combustor wall temperature. This fact shows that the circular combustor has the smallest heat loss from the flame to the combustor wall. Furthermore, a circular mesoscale combustor has the most extensive stability map. For the same volume, the circular combustor has a lower surface area to volume ratio, thus the heat loss is also low. The dead zone area also becomes narrower, only at a low reactant rate. Rectangular combustors have the largest surface area to volume ratio, thus the losses are also the biggest. Despite the narrowest flammability limits, rectangular combustors have the highest average wall temperatures

Author Biographies

Satworo Adiwidodo, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145 State Polytechnic of Malang Jl. Soekarno-Hatta, 9, Malang, Indonesia, 65141

Doctoral Student

Department of Mechanical Engineering

Lecturer

Department of Mechanical Engineering

I Nyoman Gede Wardana, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

PhD, Professor

Department of Mechanical Engineering

Lilis Yuliati, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering, Assistant Professor

Department of Mechanical Engineering

Mega Nur Sasongko, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering, Assistant Professor

Department of Mechanical Engineering

References

  1. Sharaf, O. Z., Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32, 810–853. doi: https://doi.org/10.1016/j.rser.2014.01.012
  2. Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P. E., Ekins, P. et. al. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12 (2), 463–491. doi: https://doi.org/10.1039/c8ee01157e
  3. Oudenhoven, J. F. M., Vullers, R. J. M., Schaijk, R. (2012). A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems. International Journal of Energy Research, 36 (12), 1139–1150. doi: https://doi.org/10.1002/er.2949
  4. Chou, S. K., Yang, W. M., Chua, K. J., Li, J., Zhang, K. L. (2011). Development of micro power generators – A review. Applied Energy, 88 (1), 1–16. doi: https://doi.org/10.1016/j.apenergy.2010.07.010
  5. Ju, Y., Maruta, K. (2011). Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science, 37 (6), 669–715. doi: https://doi.org/10.1016/j.pecs.2011.03.001
  6. Kaisare, N. S., Vlachos, D. G. (2012). A review on microcombustion: Fundamentals, devices and applications. Progress in Energy and Combustion Science, 38 (3), 321–359. doi: https://doi.org/10.1016/j.pecs.2012.01.001
  7. Nakamura, Y., Gao, J., Matsuoka, T. (2017). Progress in small-scale combustion. Journal of Thermal Science and Technology, 12 (1), JTST0001–JTST0001. doi: https://doi.org/10.1299/jtst.2017jtst0001
  8. Zhong, B.-J., Wang, J.-H. (2010). Experimental study on premixed CH4/air mixture combustion in micro Swiss-roll combustors. Combustion and Flame, 157 (12), 2222–2229. doi: https://doi.org/10.1016/j.combustflame.2010.07.014
  9. Zhou, J., Wang, Y., Yang, W., Liu, J., Wang, Z., Cen, K. (2009). Improvement of micro-combustion stability through electrical heating. Applied Thermal Engineering, 29 (11-12), 2373–2378. doi: https://doi.org/10.1016/j.applthermaleng.2008.12.005
  10. Pan, J., Zhang, R., Lu, Q., Zha, Z., Bani, S. (2017). Experimental study on premixed methane-air catalytic combustion in rectangular micro channel. Applied Thermal Engineering, 117, 1–7. doi: https://doi.org/10.1016/j.applthermaleng.2017.02.008
  11. Chen, J., Yan, L., Song, W., Xu, D. (2018). Catalytic Oxidation of Synthesis Gas on Platinum at Low Temperatures for Power Generation Applications. Energies, 11 (6), 1575. doi: https://doi.org/10.3390/en11061575
  12. Gan, Y., Tong, Y., Jiang, Z., Chen, X., Li, H., Jiang, X. (2018). Electro-spraying and catalytic combustion characteristics of ethanol in meso-scale combustors with steel and platinum meshes. Energy Conversion and Management, 164, 410–416. doi: https://doi.org/10.1016/j.enconman.2018.03.018
  13. Miesse, C., Masel, R., Short, M., Shannon, M. (2005). Experimental observations of methane–oxygen diffusion flame structure in a sub-millimetre microburner. Combustion Theory and Modelling, 9 (1), 77–92. doi: https://doi.org/10.1080/13647830500051661
  14. Li, J., Zhong, B. (2008). Experimental investigation on heat loss and combustion in methane/oxygen micro-tube combustor. Applied Thermal Engineering, 28 (7), 707–716. doi: https://doi.org/10.1016/j.applthermaleng.2007.06.001
  15. Sarrafan Sadeghi, S., Tabejamaat, S., Baigmohammadi, M., Zarvandi, J. (2014). An experimental study of the effects of equivalence ratio, mixture velocity and nitrogen dilution on methane/oxygen pre-mixed flame dynamics in a meso-scale reactor. Energy Conversion and Management, 81, 169–183. doi: https://doi.org/10.1016/j.enconman.2014.02.022
  16. Baigmohammadi, M., Tabejamaat, S., Yeganeh, M. (2019). Experimental study of methane-oxygen premixed flame characteristics in non-adiabatic micro-reactors. Chemical Engineering and Processing - Process Intensification, 142, 107590. doi: https://doi.org/10.1016/j.cep.2019.107590
  17. Fan, A., Wan, J., Liu, Y., Pi, B., Yao, H., Maruta, K., Liu, W. (2013). The effect of the blockage ratio on the blow-off limit of a hydrogen/air flame in a planar micro-combustor with a bluff body. International Journal of Hydrogen Energy, 38 (26), 11438–11445. doi: https://doi.org/10.1016/j.ijhydene.2013.06.100
  18. Wan, J., Fan, A., Liu, Y., Yao, H., Liu, W., Gou, X., Zhao, D. (2015). Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities. Combustion and Flame, 162 (4), 1035–1045. doi: https://doi.org/10.1016/j.combustflame.2014.09.024
  19. Zhang, Z., Wu, K., Yao, W., Yuen, R., Wang, J. (2020). Enhancement of combustion performance in a microchannel: Synergistic effects of bluff-body and cavity. Fuel, 265, 116940. doi: https://doi.org/10.1016/j.fuel.2019.116940
  20. Chen, X., Li, J., Feng, M., Zhao, D., Shi, B., Wang, N. (2019). Flame stability and combustion characteristics of liquid fuel in a meso-scale burner with porous media. Fuel, 251, 249–259. doi: https://doi.org/10.1016/j.fuel.2019.04.011
  21. Yuliati, L. (2014). Flame Stability of Gaseous Fuel Combustion inside Meso-Scale Combustor with Double Wire Mesh. Applied Mechanics and Materials, 664, 231–235. doi: https://doi.org/10.4028/www.scientific.net/amm.664.231
  22. Sanata, A., Wardana, I. N. G., Yuliati, L., Sasongko, M. N. (2019). Effect of backward facing step on combustion stability in a constant contact area cylindrical meso­scale combustor. Eastern-European Journal of Enterprise Technologies, 1 (8 (97)), 51–59. doi: https://doi.org/10.15587/1729-4061.2019.149217
  23. Adiwidodo, S., Wardana, I. N. G., Yuliati, L., Sasongko, M. N. (2016). Flame Stability Measurement on Rectangular Slot Meso-Scale Combustor. Applied Mechanics and Materials, 836, 271–276. doi: https://doi.org/10.4028/www.scientific.net/amm.836.271
  24. Yan, Y., He, Z., Xu, Q., Zhang, L., Li, L., Yang, Z., Ran, J. (2019). Numerical study on premixed hydrogen/air combustion characteristics in micro–combustor with slits on both sides of the bluff body. International Journal of Hydrogen Energy, 44 (3), 1998–2012. doi: https://doi.org/10.1016/j.ijhydene.2018.11.128
  25. Adiwidodo, S., Wardana, I. N. G., Yuliati, L., Sasongko, M. N. (2019). Development of planar meso­scale combustor with double narrow slit flame holder and various aspect ratios for micropower generator. Eastern-European Journal of Enterprise Technologies, 1 (8 (97)), 14–23. doi: https://doi.org/10.15587/1729-4061.2019.155663

Downloads

Published

2020-04-30

How to Cite

Adiwidodo, S., Wardana, I. N. G., Yuliati, L., & Sasongko, M. N. (2020). Performance of cylindrical and planar meso­scale combustor with double narrow slit flame holder for micropower generator. Eastern-European Journal of Enterprise Technologies, 2(8 (104), 35–43. https://doi.org/10.15587/1729-4061.2020.198570

Issue

Section

Energy-saving technologies and equipment