Development of a powerful low­voltage DC converter for systems of electric power accumulation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.198950

Keywords:

battery, ionistor, parallel charge, sequential discharge, electric field energy, charge balance

Abstract

The study offers a solution to the problem associated with the use of batteries in autonomous solar and wind power plants, power installations, and electric vehicles. It is known that one battery element can produce 1.2–4 V, which is not enough for subsequent transformations. There is a need to complete the battery, in series-parallel connection, with several elements to several thousand elements. During its operation, slight deviations of the voltage of the elements occur, which subsequently accumulate and lead to the battery failure. To prevent such phenomena, diagnostics with an accuracy of 0.1–0.001 V per element is necessary. This complicates the control system and forces the entire battery to be rejected in case of failure of a certain number of elements. The load on the surrounding space for the disposal of lead, lithium, and cadmium is increasing. It has been established that effective converters of direct current to direct current at the indicated voltages and capacities do not exist. Voltage converters from level 3 use an intermediate link to convert the magnetic field. This type of low voltage converter is used only at low power.

It was proved that a significant number of battery elements connected in a series in parallel can be replaced with one equivalent in energy. The conducted tests have established that it is advisable to produce a subsequent increase in voltage with ionistors by charging them in parallel followed by a discharge in the series.

A mathematical description of the operation of the converter was developed, starting from the moment of switching on and reaching the steady state with subsequent response to a change in the load. Since the operation of the converter involves significant currents, the components of the internal resistances of all elements are taken into account. This approach helps study possible technical implementations, identify patterns when varying its parameters, and optimize conditions, depending on the type of chemical elements and consumer power

Author Biographies

Anatoly Panchenko, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Electrotechnical Systems of Arms and Military Equipment

Dmytro Karlov, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Head Deputy of Scientific Center

Center of Air Force of Scientific Work

Yuriy Kusakin, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

PhD, Associate Professor, Head of Faculty

Faculty of Postgraduate Education

Maksim Kuravskiy, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Researcher

Faculty of Anti-Aircraft Missile Troops

Oleksandr Drol, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Lecturer

Department of Tactics and General Military Disciplines

References

  1. Li, X., Zhang, D. (2018). Coordinated Control and Energy Management Strategies for Hundred Megawatt-level Battery Energy Storage Stations Based on Multi-agent Theory. 2018 International Conference on Advanced Mechatronic Systems (ICAMechS). doi: https://doi.org/10.1109/icamechs.2018.8506868
  2. Badeda, J., Kwiecien, M., Schulte, D., Ruwald, T., Sauer, D. U. (2017). Adaptive battery steering and management system for the optimized operation of stationary battery energy storage systems in multi-use applications. 2017 IEEE International Telecommunications Energy Conference (INTELEC). doi: https://doi.org/10.1109/intlec.2017.8214149
  3. Smith, S., Firdous, I., Wang, Q., Esmalla, S., Daoud, W. A. (2019). A two-dimensional model of the vanadium–cerium redox flow battery. Electrochimica Acta, 328, 135019. doi: https://doi.org/10.1016/j.electacta.2019.135019
  4. Wang, R., Li, Y., Wang, Y., Fang, Z. (2020). Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery. Applied Energy, 261, 114369. doi: https://doi.org/10.1016/j.apenergy.2019.114369
  5. Grisales-Noreña, L. F., Montoya, O. D., Gil-González, W. (2019). Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. Journal of Energy Storage, 25, 100891. doi: https://doi.org/10.1016/j.est.2019.100891
  6. Iurilli, P., Brivio, C., Merlo, M. (2019). SoC management strategies in Battery Energy Storage System providing Primary Control Reserve. Sustainable Energy, Grids and Networks, 19, 100230. doi: https://doi.org/10.1016/j.segan.2019.100230
  7. Biya, T. S., Sindhu, M. R. (2019). Design and Power Management of Solar Powered Electric Vehicle Charging Station with Energy Storage System. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). doi: https://doi.org/10.1109/iceca.2019.8821896
  8. Abdelkafi, A., Masmoudi, A., Krichen, L. (2018). Assisted power management of a stand-alone renewable multi-source system. Energy, 145, 195–205. doi: https://doi.org/10.1016/j.energy.2017.12.133
  9. Khan, A., Memon, S., Sattar, T. (2017). Integration and Management of Solar Energy for Electric Vehicle Charging Station. Proceedings of SWC2017/SHC2017. doi: https://doi.org/10.18086/swc.2017.16.03
  10. Zhang, Y., Lu, S. (2018). Research on Series-Parallel Connection Switching Charging Method for Lithium Battery of Autonomous Underwater Vehicles. 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS). doi: https://doi.org/10.1109/usys.2018.8779098
  11. Belmokhtar, K., Ibrahim, H., Ghandour, M. (2016). Improving performance of batteries by using charge equalization systems – Experimental validation. 2016 3rd International Conference on Renewable Energies for Developing Countries (REDEC). doi: https://doi.org/10.1109/redec.2016.7577542
  12. Vodorodnaya energetika: nachalo bol'shogo puti. Available at: https://habr.com/ru/company/toshibarus/blog/428511/
  13. Korovin, N. V. (2005). Toplivnye elementy i elektrohimicheskie energoustanovki. Moscow: Izd-vo MEI, 208.
  14. Akkumulyatory gelevye, mul'tigelevye i AGM - v chem raznitsa? Available at: https://lantorg.com/article/akkumulyatory-gelevye-multigelevye-i-agm-v-chem-raznitsa
  15. Korovin, N. (2002). Nikel'-Metallgidridnye akkumulyatory. Elektronnye komponenty, 4, 99–103.
  16. Revolyutsiya zakonchilas'. Est' li al'ternativa litiy-ionnomu akkumulyatoru? Available at: https://habr.com/ru/company/toshibarus/blog/462185/
  17. Stoimost' soderzhaniya i remonta elektrokara Nissan LEAF v Ukraine. Available at: https://elektrovesti.net/60052_stoimost-soderzhaniya-i-remonta-elektrokara-nissan-leaf-v-ukraine
  18. Savinyh, V. (2018). "Salyut-7". Zapiski s "mertvoy" stantsii. Moscow: Eksmo, 256.
  19. Sidorovich, V. (2017). K voprosu utilizatsii litiy-ionnyh akkumulyatorov. Available at: https://renen.ru/on-the-issue-of-recycling-lithium-ion-batteries/
  20. Povyshayushchie DC-DC preobrazovateli. Available at: https://bigl.ua/sc-2508878-Povyshayuschie-dc-dc-preobrazovateli?gclid=Cj0KCQiAl5zwBRCTARIsAIrukdPxFVpQB7Wt12gea7RxyOYPa4sPn-8d9EL43rXdajAdkeURDetWB58aAnvDEALw_wcB
  21. DC/DC-преобразователи мощностью 1 кВт серии FXW от Calex. Available at: https://power-e.ru/components/dc-dc-preobrazovateli-moshhnostyu-1-kvt-serii-fxw-ot-calex/
  22. GaN used to Design 2.5MHz 3kW Resonant DC-DC (2016). Available at: https://www.radiolocman.com/news/new.html?di=276561
  23. Tsarenko, A., Seregin, D. (2006). K voprosu postroeniya moshchnyh DC-DC preobrazovateley napryazheniya, pitayushchihsya ot nizkovol'tnyh setey. Silovaya Elektronika, 3, 68–72.
  24. Loo, S., Keller, K. (2004). Single-cell Battery Discharge Characteristics Using the TPS61070 Boost Converter. Application Report SLVA194–AUGUST 2004. Available at: http://www.ti.com/lit/an/slva194/slva194.pdf
  25. Sozdanie vysokoeffektivnyh kompaktnyh preobrazovateley postoyannogo napryazheniya dlya perenosnoy apparatury, pitaemoy ot odnogo 1,5V elementa. Available at: http://www.gaw.ru/html.cgi/txt/publ/powersuply/bat_1-5.htm
  26. Vasil'ev, A. (2014). Kondensator vmesto akkumulyatora. Available at: https://www.elec.ru/articles/kondensator-vmesto-akkumulyatora/
  27. Den'shchikov, K. K. (2013). Superkondensatory: printsip postroeniya, tehnika i primeneniya. Uchenyy sovet OIVT RAN.
  28. Oakes, L., Westover, A., Mares, J. W., Chatterjee, S., Erwin, W. R., Bardhan, R. et. al. (2013). Surface engineered porous silicon for stable, high performance electrochemical supercapacitors. Scientific Reports, 3 (1). doi: https://doi.org/10.1038/srep03020
  29. Yan, X., Tai, Z., Chen, J., Xue, Q. (2011). Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale, 3 (1), 212–216. doi: https://doi.org/10.1039/c0nr00470g
  30. Pentegov, I. V. (1996). K teorii teslovskih protsessov zaryadki emkostnyh nakopiteley energii. Elektrichestvo, 6, 42–47.
  31. Despotuli, A. L., Andreeva, A. V. (2003). Sozdanie novyh tipov tonkoplenochnyh superkondensatorov dlya mikrosistemnoy tehniki i mikro- (nano) elektroniki. Mikrosistemnaya tehnika, 11, 2–10.
  32. Despotuli, A. L., Andreeva, A. V., Vedeneev, V. V., Aristov, V. V., Mal'tsev, P. P. (2006). Vysokoemkie kondensatory dlya ul'traplotnogo poverhnostnogo montazha. Nano- i mikrosistemnaya tehnika, 3, 30–37.
  33. Medzhahed, D., Tsvetkov, D. (2009). «Ideal'nye diody» ot kompanii STMicroelectronics. Novosti elektroniki, 14, 23–25.
  34. Nizkovol'tnye MOSFETs dlya sil'notochnyh primeneniy i zhestkih usloviy (2014). Available at: https://www.compel.ru/lib/65023
  35. Bashkirov, V. (2008). Novye semeystva vysokoeffektivnyh nizkovol'tnyh MOSFET. Novosti elektroniki, 18, 29–32.

Downloads

Published

2020-04-30

How to Cite

Panchenko, A., Karlov, D., Kusakin, Y., Kuravskiy, M., & Drol, O. (2020). Development of a powerful low­voltage DC converter for systems of electric power accumulation. Eastern-European Journal of Enterprise Technologies, 2(8 (104), 25–34. https://doi.org/10.15587/1729-4061.2020.198950

Issue

Section

Energy-saving technologies and equipment