An experimental study of Al2O3 nаnoparticles influence on caloric properties of propylene glycol based coolants

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.200126

Keywords:

coolant, propylene glycol, nanoparticles, caloric properties, heat capacity, phase transition, melting point, adiabatic calorimeter

Abstract

Nanofluids are promising heat carriers, which contribute to the overall efficiency of energy systems. The main obstacle to the practical application of nanocoolants based on aqueous propylene glycol solutions is the lack of accurate data on their thermophysical properties. In the paper, experimental study (adiabatic calorimetry method) of the heat capacity and parameters of solid phase – liquid phase transitions of propylene glycol and coolant based on aqueous propylene glycol solution is carried out. Experimental study of the heat capacity of the liquid phase of the coolant based on an aqueous solution of propylene glycol with additives of Al2O3 nanoparticles (up to 2.01 wt. %) in the temperature range of 235...338 K and propylene glycol with additives of Al2O3 nanoparticles (1.03 wt. %) in the temperature range of 268…335 K is performed.

The comparison of the temperature dependence of the effective heat capacity of coolants with changes in their internal structure is made. It is shown that adding water to propylene glycol increases the temperature and heat of the solid phase – liquid phase transition (the heat of the propylene glycol phase transition is 37.85 J∙g–1, propylene glycol/water coolant (54/46 wt. %) – 77.97 J∙g–1). It is shown that additives of Al2O3 nanoparticles both in propylene glycol and in the coolant based on an aqueous propylene glycol solution contribute to the reduction of the heat capacity of the liquid. The heat capacity decreases approximately in proportion to the increase in the concentration of nanoparticles. The effect of heat capacity reduction is greater at high temperatures (3.9 % at 265 K and 5.0 % at 325 K for the nanocoolant with an Al2O3 nanoparticle concentration of 2.01 wt. %).

The results obtained will improve the design quality of heat exchange equipment using nanocoolants. The results are useful for developing methods for predicting the specific heat of nanofluids

Author Biographies

Igor Motovoy, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

PhD

Research Laboratory of Refrigeration Technique

Sergiy Artemenko, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Doctor of Technical Sciences, Professor

Department of Computer Engineering

Olga Khliyeva, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Doctor of Technical Sciences, Аssociate Professor

Department of Thermal Physics and Applied Ecology

Vitaly Zhelezny, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Doctor of Technical Sciences, Professor

Department of Thermal Physics and Applied Ecology

Yury Semenyuk, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Doctor of Technical Sciences, Professor

Department of Thermal Physics and Applied Ecology

Aleksey Paskal, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Postgraduate Student

Department of Thermal Physics and Applied Ecology

References

  1. Gupta, M., Singh, V., Kumar, R., Said, Z. (2017). A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews, 74, 638–670. doi: https://doi.org/10.1016/j.rser.2017.02.073
  2. Sekrani, G., Poncet, S. (2018). Ethylene- and Propylene-Glycol Based Nanofluids: A Litterature Review on Their Thermophysical Properties and Thermal Performances. Applied Sciences, 8 (11), 2311. doi: https://doi.org/10.3390/app8112311
  3. Pérez-Tavernier, J., Vallejo, J. P., Cabaleiro, D., Fernández-Seara, J., Lugo, L. (2019). Heat transfer performance of a nano-enhanced propylene glycol: water mixture. International Journal of Thermal Sciences, 139, 413–423. doi: https://doi.org/10.1016/j.ijthermalsci.2019.02.012
  4. Manikandan, S., Rajan, K. S. (2016). Sand-propylene glycol-water nanofluids for improved solar energy collection. Energy, 113, 917–929. doi: https://doi.org/10.1016/j.energy.2016.07.120
  5. Khliyeva, O., Ryabikin, S., Lukianov, N., Zhelezny, V. (2017). Experimental study of heat exchange and hydrodynamics at the laminar flow of nanocoolant based on propylene glycol and Al2O3 nanoparticles. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 4–12. doi: https://doi.org/10.15587/1729-4061.2017.91780
  6. Nikulin, A., Moita, A. S., Moreira, A. L. N., Murshed, S. M. S., Huminic, A., Grosu, Y. et. al. (2019). Effect of Al2O3 nanoparticles on laminar, transient and turbulent flow of isopropyl alcohol. International Journal of Heat and Mass Transfer, 130, 1032–1044. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.114
  7. Riazi, H., Murphy, T., Webber, G. B., Atkin, R., Tehrani, S. S. M., Taylor, R. A. (2016). Specific heat control of nanofluids: A critical review. International Journal of Thermal Sciences, 107, 25–38. doi: https://doi.org/10.1016/j.ijthermalsci.2016.03.024
  8. Akilu, S., Baheta, A. T., Kadirgama, K., Padmanabhan, E., Sharma, K. V. (2019). Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluids. Journal of Molecular Liquids, 284, 780–792. doi: https://doi.org/10.1016/j.molliq.2019.03.159
  9. Zhelezny, V., Khliyeva, O., Motovoy, I., Lukianov, N. (2019). An experimental investigation and modelling of the thermal and caloric properties of nanofluids isopropyl alcohol - Al2O3 nanoparticles. Thermochimica Acta, 678, 178296. doi: https://doi.org/10.1016/j.tca.2019.05.011
  10. Satti, J. R., Das, D. K., Ray, D. (2016). Specific heat measurements of five different propylene glycol based nanofluids and development of a new correlation. International Journal of Heat and Mass Transfer, 94, 343–353. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.065
  11. Chandran, M. N., Manikandan, S., Suganthi, K. S., Rajan, K. S. (2017). Novel hybrid nanofluid with tunable specific heat and thermal conductivity: Characterization and performance assessment for energy related applications. Energy, 140, 27–39. doi: https://doi.org/10.1016/j.energy.2017.08.056
  12. Sahoo, R., Ghosh, P., Sarkar, J. (2017). Performance comparison of various coolants for louvered fin tube automotive radiator. Thermal Science, 21 (6 Part B), 2871–2881. doi: https://doi.org/10.2298/tsci150219213s
  13. Dyment, O. N., Kazanskiy, K. S., Miroshnikov, A. M. (1976). Glikoli i drugie proizvodnye okisey etilena i propilena. Moscow: Himiya.
  14. Khliyeva, O. Y., Nikulina, A. S., Polyuganich, M. P., Ryabikin, S. S., Zhelezny, V. P. (2016). Viscosity of ternary solutions composed of propylene glycol, ethanol and water. Refrigeration Engineering and Technology, 52 (3), 29–35. doi: https://doi.org/10.15673/ret.v52i3.120
  15. Zhelezny, V., Motovoy, I., Khliyeva, O., Lukianov, N. (2019). An influence of Al2O3 nanoparticles on the caloric properties and parameters of the phase transition of isopropyl alcohol in solid phase. Thermochimica Acta, 671, 170–180. doi: https://doi.org/10.1016/j.tca.2018.11.020
  16. Taylor, B. N., Kuyatt, C. E. (1994). Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Technical Note 1297. doi: https://doi.org/10.6028/nist.tn.1297
  17. VDI Heat Atlas (2010). Springer, 1586. doi: https://doi.org/10.1007/978-3-540-77877-6

Downloads

Published

2020-04-30

How to Cite

Motovoy, I., Artemenko, S., Khliyeva, O., Zhelezny, V., Semenyuk, Y., & Paskal, A. (2020). An experimental study of Al2O3 nаnoparticles influence on caloric properties of propylene glycol based coolants. Eastern-European Journal of Enterprise Technologies, 2(6 (104), 6–12. https://doi.org/10.15587/1729-4061.2020.200126

Issue

Section

Technology organic and inorganic substances