Substantiation of the stability of haulage drifts with protective structures of different rigidity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.202483

Keywords:

mining pressure, breakage face, side rock collapse, the filling of worked space, pliable supports

Abstract

The purpose of the current research is to substantiate the conditions for the stability of haulage drifts when developing steep coal seams.

The process of modeling the stability of haulage drifts has established that the stressed-strained state of side rocks in a coal-producing array that includes workings depends on the physical and mechanical properties of the roof and soil of the worked coal seam, the rigidity of protective structures, and the length of the roof section supported by a protective structure. Increasing the length of the roof section supported by a protective structure, at the minimal rigidity of pliable supports, increases the zone of smooth bending of the side rocks over a haulage drift and decreases the level of their stressed-strained state.

It has been proven that when maintaining mining workings in deep mines, a reduction in the stressed-strained state of the side rocks, when applying the filling of the worked space, occurs as a result of the sealing of the filling massif on which the roof rocks are based when the values of the compaction factor of the source material accept maximum values equal to kcomp=1.5–1.53. When using artificial pliable protective structures, erected above a drift, a change in the stressed-strained state occurs as a result of compression of the supports, when the movement of rocks of the roof and soil is limited and the area of contact between side rocks and the erected protective structures increases.

When choosing a protection technique for haulage drifts, it is necessary to take into consideration the parameters of the protective structures, because the impact of the size of the same supports, at the same rigidity, on the distribution of stresses in a coal-rock massif is diverse.

In order to ensure the operational condition of the district preparatory workings in the development of steep coal seams, it is advisable to use pliable protective structures located above a haulage drift, which limit the movement of side rocks in the worked space

Author Biographies

Igor Iordanov, LLC "MC ELTEKO" Tykhoho str., 3, Kostiantynivka, Ukraine, 85103

PhD, Chairman of the Board

Yuliia Simonova, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

Postgraduate Student

Department of Mining of Mineral Deposits

Oleksiy Kayun, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

Postgraduate Student

Department of Mining of Mineral Deposits

Yevgen Podkopayev, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

Postgraduate Student

Department of Mining of Mineral Deposits

Anton Polozhii, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

Postgraduate Student

Department of Mining of Mineral Deposits

Hennadii Boichenko, "SVYATO-POKROVSKAYA No. 3 MINE" LLC Shybankova sq., 1а, Pokrovsk, Ukraine, 85300

Director

References

  1. Zinchenko, Yu. I., Sudin, M. S., Zinchenko, A. Yu. (2011). Perspektiva razvitiya shaht TSentral'nogo rayona Donbassa. Ugol' Ukrainy, 12, 35–38.
  2. Liashok, Y., Iordanov, I., Chepiga, D., Podkopaiev, S. (2018). Experimental studies of the seam openings competence in different methods of protection under pitch and steep coal seams development. Mining of Mineral Deposits, 12 (4), 9–19. doi: https://doi.org/10.15407/mining12.04.009
  3. Sotskov, V., Gusev, O. (2014). Features of using numerical experiment to analyze the stability of development workings. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 401–404. doi: https://doi.org/10.1201/b17547-68
  4. Dzyuba, S. V., Shmelev, N. A., Koval', N. V. (2012). Analysis of technology of underground development of mineral deposits for mining work in difficult geological conditions. Geotehnicheskaya mehanika, 101, 284–291.
  5. Zhukov, V. E. (2001). Ob odnoy strategicheskoy oshibke v razreshenii problemy razrabotki krutyh plastov. Ugol' Ukrainy, 7, 6–10.
  6. Krupnik, L. A., Shaposhnik, Y. N., Shaposhnik, S. N., Tursunbaeva, A. K. (2013). Backfilling technology in Kazakhstan mines. Journal of Mining Science, 49 (1), 82–89. doi: https://doi.org/10.1134/s1062739149010103
  7. Blyuss, B., Semenenko, Eu., Nykyforova, N. (2008). The calculation procedure of hydrotransport parameters of bulk solids using hydrodynamically active additives solutions. Papers presented at the 14th International Conference on Transport and Sedimentation of Solid Particles. Saint Petersburg, 41–48.
  8. Podkopaiev, S., Gogo, V., Yefremov, I., Kipko, O., Iordanov, I., Simonova, Y. (2019). Phenomena of stability of the coal seam roof with a yielding support. Mining of Mineral Deposits, 13 (4), 28–41. doi: https://doi.org/10.33271/mining13.04.028
  9. Shpakov, V. P.; Fedyukin, D. L. (Ed.) (1986). Klassifikatsiya pnevmaticheskih konstruktsiy. Primenenie RTI v narodnom hozyaystve. Moscow: Himiya, 240.
  10. Henderson, Dzh., Nashif, A., Dzhouns, D. (1988). Dempfirovanie kolebaniy. Moscow: Mir, 448.
  11. Haimova-Mal'kova, R. I. (1970). Metodika issledovaniy napryazheniy polyarizatsionno-opticheskim metodom. Moscow: Nauka, 116.
  12. Glushihin, F. P., Kuznetsov, G. N., Shklyarskiy, M. F. et. al. (1991). Modelirovanie v geomehanike. Moscow: Nedra, 240.
  13. Basov, V. V., Rib, S. V. (2016). Selection of equivalent material for physical modeling of geomechanical processes in the vicinity of the mine workings of coal mines. Bulletin of the Siberian State Industrial University, 4, 32–35.
  14. Shashenko, A. N., Pustovoytenko, V. P., Sdvizhkova, E. A. (2016). Geomehanika. Kyiv: Noviy druk, 528.
  15. Borshch-Komponiets, V. I. (2013). Prakticheskaya mehanika gornyh porod. Moscow: Gornaya kniga, 322.
  16. Hrebonkin, S. S., Havrysh, M. M. (Eds.) (2004). Mekhanika hirskykh porid. Vol. 1. Donetsk: DonNTU, 169.
  17. Baklashov, I. V. (1988). Deformirovanie i razrushenie porodnyh massivov. Moscow: Nedra, 271.
  18. Kleppner, D., Kolenkow, R. J. (2012). An Introduction to Mechanics. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511794780
  19. Aliev, T. I. (2009). Osnovy modelirovaniya diskretnyh sistem. Sankt-Peterburg, 363.
  20. Iordanov, I. V., Simonova, Yu. I., Polozhy, A. V., Podkopayev, Ye. S., Skyrda, A. Ye., Kayun, A. P. (2020). A comprehensive study of the stability of lateral rocks with a supple support. World Science, 1 (1 (53)), 4–17. doi: https://doi.org/10.31435/rsglobal_ws/31012020/6889
  21. Obiralov, A. I., Limonov, A. N., Gavrilova, L. A. (2006). Fotogrammetriya i distantsionnoe zondirovanie. Moscow: Koloss, 335.
  22. TSigler, F. (2002). Mehanika tverdyh tel i zhidkostey. Izhevsk, 912.
  23. Akimov, V. A. et. al. (2010). Teoreticheskaya mehanika. Dinamika. Praktikum. Chast' 2. Dinamika material'noy sistemy. Analiticheskaya mehanika. Minsk: Novoe znanie; Moscow: TSUPL, 863.
  24. Strelkov, S. P. (2005). Vvedenie v teoriyu kolebaniy. Sankt-Peterburg: Lan', 440.
  25. Gogo, V., Kipko, A., Vlasenko, N., Simonova, Y., Polozhy, A. (2019). Features of the stressed-deformed state of the side breeds in the assessment of the operational state of mining operations. Journal of Donetsk Mining Institute, 1, 53–64. doi: https://doi.org/10.31474/1999-981x-2019-1-53-64

Downloads

Published

2020-06-30

How to Cite

Iordanov, I., Simonova, Y., Kayun, O., Podkopayev, Y., Polozhii, A., & Boichenko, H. (2020). Substantiation of the stability of haulage drifts with protective structures of different rigidity. Eastern-European Journal of Enterprise Technologies, 3(7 (105), 87–96. https://doi.org/10.15587/1729-4061.2020.202483

Issue

Section

Applied mechanics