Boiling heat transfer on smooth and porous surfaces in the limitted space
DOI:
https://doi.org/10.15587/1729-4061.2014.20316Keywords:
heat transfer intensity, empirical dependence, boiling, limited volume, porous structureAbstract
When designing passive cooling systems for radioelectronic and computer equipment based on conventional and miniature heat pipes it is necessary to carry out a preliminary estimation of heat transfer characteristics. For calculating heat transfer capacity of a heat pipe it is necessary to possess information about heat transfer intensity at phase transitions in the zones of heating and condensing.
The results of experimental studies of heat transfer coefficients when boiling on smooth and porous surfaces under conditions of a large and limited volume are given. There is a significant influence of a free space height above the heat transfer surface on a heat removal intensity rate under phase transition. The criterial dependencies, obtained from the analysis and synthesis of experimental data, are given. The given equations allow calculating heat transfer coefficients in relation to geometrical and operational parameters in the range of Reynolds numbers Re=400…2•105 and for free space heights, satisfying the condition of (h/lc)=1…10 for smooth surfaces, as well as in the range of Reynolds numbers from 150 to 3000 for metal-fiber capillary structures 0.7-1.0 mmthick and porosity within the range of 75-85 % of the spaces between the CPS (a capillary porous system) surface and the upper wall from 2 to20 mm. The error of the obtained result does not exceed 20 %.
References
- Dunn, P. Heat pipes [Text]/ P. Dunn, D. A. Reay – Oxford, England; Tarrytown, N.Y., U.S.A. : Pergamon, 1994. – 348 р.
- Chi, S. W. Heat pipe theory and practice [Text] / S.W. Chi – Hemisphere Pub. Corp, 1976. – 242 р.
- Семена, М. Г. Тепловые трубы с металловолкнистыми капиллярными структурами [Текст]/ М. Г. Семена, А. Н. Гершуни, В. К. Зарипов. – К: Вища шк. Головное изд-во, 1984 – 215 с
- Pastuszko, R. Correlations for boiling in fibrous porous structures [Тext]/ R. Pastuszko, M. Poniewski, T. Wojcik // In: Proc. IV Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”. – Minsk, Belarus. – 2000. – Р. 149-155
- Фрідріхсон, Ю. В. Вплив тиску і характеристик металоволокнистих покриттів на теплообмін при кипінні рідин у великому об’ємі. Автореферат дисертації на здобуття наукового ступеня кандидата технічних наук: 05.14.05 [Текст]/ Ю. В. Фрідріхсон – Київ, КПІ 1995. – 16 с.
- Alam, M. S. Enhanced boiling of saturated water on copper coated heating tubes [Тext]/ M. S. Alam, L. Prasad, S. C. Gupta, V. K. Agarwal // Chemical Engineering and Processing Process Intensification. – 2008. – January (Vol. 47, Iss.1). – Р. 159-167
- Ferret, C. Quantification of the water boiling heat transfer in micro-structures by image analysis [Тext]/ C. Ferret, L. Falk, A. Chenu, U. D’Ortona, T. T. Veenstra // Superlattices and Microstructures. – 2004. – Vol. 34. – P.657-668
- Shapoval, A. A. Influence of the characteristics capabilities of fibrous metal capillary structures on heat transfer in boiling water and acetone [Тext] / A. A. Shapoval, A. G. Kostornov // In: Proc. 11th International heat pipe conference. - Musashinoshi Tokyo, Japan. – 1999. – Vol. 2, A11 -4 – Р.113-118
- Алексеик, О. С. Интенсивность теплоотдачи при кипении на поверхности малого размера [Текст] / О. С. Алексеик, В. Ю. Кравец, И. А Копчевская // Технология и конструирование в электронной аппаратуре. – 2012. – №1. – С.49-53.
- Kravets, V. Yu. Boiling Heat-Transfer Intensity on Small-Scale Surface [Тext] / V. Yu. Kravets, O.S. Alekseik // International Review of Mechanical Ingeneering. – March 2012. - Vol. 6 N. 3, Part A, pp. 479 – 484
- Алексеїк, О. С. Фізична модель процесу кипіння на пористій поверхні в обмежених умовах [Текст] / О. С. Алексеїк, В. Ю. Кравець // Восточно-европейский журнал передовых технологий. – 2013. - №4/8 (64). - С. 26-31
- Dunn, P., Reay, D. A.. (1994). Heat pipes. Oxford, England; Tarrytown, N. Y., U.S.A. : Pergamon, 348.
- Chi, S. W. (1976). Heat pipe theory and practice Hemisphere Pub. Corp, 242.
- Semena, M. H., Hershuni, A. N., Zaripov, V. K. (1984). Heat pipes with metal-fibrous capillary-porous structures. Kyiv: High school, 215.
- Pastuszko, R., Poniewski, M., Wojcik, T. (2000). Correlations for boiling in fibrous porous structures. In: Proc. IV Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, 149-155.
- Phridrihson, Yu. V. (1995). Influence of pressure and metal-fibrous capillary coating characteristics on boiling heat transfer in large volume. Dissertation. Kyiv: KPI, 16.
- Alam, M. S. Prasad, L., Gupta, S. C., Agarwal, V. K. (2008). Enhanced boiling of saturated water on copper coated heating tubes. Chemical Engineering and Processing Process Intensification, Vol. 47, Iss. 1, 159-167.
- Ferret, C., Falk, L., Chenu, A. (2004). Quantification of the water boiling heat transfer in micro-structures by image. Superlattices and Microstructures, 34, 657-668.
- Shapoval, A. A., Kostornov, A. G. (1999). Influence of the characteristics capabilities of fibrous metal capillary structures on heat transfer in boiling water and acetone. In: Proc. 11th International heat pipe conference. Musashinoshi Tokyo, Japan. Vol. 2 (A11-4), 113-118
- Alekseik, O. S., Kravets, V. Yu., Kopchevska, I. A. (2012). Heat transfer intensity at boiling on small-size surface. Technology and construction in electronic apparatuses, 1, 49-53.
- Kravets, V. Yu., Alekseik, O. S. (2012). Boiling Heat-Transfer Intensity on Small-Scale Surface. International Review of Mechanical Ingeneering, 6 (3, A), 479 - 484.
- Alekseik, O. S., Kravets, V. Yu. (2013). Phisycal model of boiling on porous structure in the limited space Eastern-European Journal of Enterprise Technologies, №4/8 (64), 26-31.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Ольга Сергеевна Алексеик, Владимир Юрьевич Кравец
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.