Surface modification of magnetic TiO2 core-shell with doped cerium for enhancement of photocatalytic performance

Authors

  • Fachruddin Fachruddin State Polytechnic of Jakarta Depok 16424, Jawa Barat, Indonesia, Indonesia
  • Iwan Susanto State Polytechnic of Jakarta Depok 16424, Jawa Barat, Indonesia, Indonesia https://orcid.org/0000-0001-7120-0374
  • Ching-Cheng Chen National Dong Hwa University Shoufeng Township, Hualien 97401, Taiwan ROC, Taiwan
  • Nugroho Eko Setijogiarto State Polytechnic of Jakarta Depok 16424, Jawa Barat, Indonesia, Indonesia
  • Fuad Zainuri State Polytechnic of Jakarta Depok 16424, Jawa Barat, Indonesia, Indonesia https://orcid.org/0000-0001-8996-281X
  • Sulaksana Permana Universitas Indonesia Depok 16424, Jawa Barat, Indonesia, Indonesia https://orcid.org/0000-0003-3473-5892
  • Johny Wahyuadi Soedarsono Universitas Indonesia Depok 16424, Jawa Barat, Indonesia, Indonesia https://orcid.org/0000-0001-6051-2866

DOI:

https://doi.org/10.15587/1729-4061.2020.203186

Keywords:

Magnetic photocatalyst, Photodegradation, Cerium doped TiO2, surface modification, photocatalytic performance

Abstract

The core-shell structure of Ce-doped TiO2@SiO2@(Ni-Cu-Zn) ferrite noted of CTSF as composite nanoparticles (NPs) was synthesized using a modified sol-gel method. The physicochemical properties of as-prepared products were characterized completely by X-ray diffraction (XRD), Brunauer-Emmit-Teller (BET), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID), serially. Meanwhile, assessment of the photocatalystic activity of catalyst was performed by ultraviolet-visible spectrometry (UV-vis). The results of the study show that the anatase phase related to the TiO2 structure was constructed on the outer shell coating of composite NPs. However, the second phase associated with the Ce structure was not easy to be detected on the XRD pattern, confirming that the doping Ce had been incorporated into the TiO2 crystal structure. The mesoporous structure of Ce-doped TiO2 layers was demonstrated by the type IV isotherm and H3 type hysteresis loop. The homogenous pore size was generated with the specific surface area up to 111.916 m2/g and 0.241 cc/g of pore volume. The stoichiometry of the chemical composition formed with fewer defects on the surface of TiO2 layers was exhibited by the symmetry curve of Ti 2p3/2 and Ti 2p1/2 peaks of XPS spectra. Meanwhile, the redox couple corresponding to Ce3+/Ce4+ was incorporated inside the thin TiO2 coating. Furthermore, the catalyst magnetic NPs can be also separated by using an external magnetic field from the reaction system. The product performance associated with the degradation efficiency was achieved to be 50 % in the aqueous solution of methylene blue (MB)

Author Biographies

Fachruddin Fachruddin, State Polytechnic of Jakarta Depok 16424, Jawa Barat, Indonesia

Master of Engineering

Department of Mechanical Engineering

Iwan Susanto, State Polytechnic of Jakarta Depok 16424, Jawa Barat, Indonesia

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Ching-Cheng Chen, National Dong Hwa University Shoufeng Township, Hualien 97401, Taiwan ROC

Doctor of Materials Science and Engineering

Department of Materials Science and Engineering

Nugroho Eko Setijogiarto, State Polytechnic of Jakarta Depok 16424, Jawa Barat, Indonesia

Master of Engineering

Department of Mechanical Engineering

Fuad Zainuri, State Polytechnic of Jakarta Depok 16424, Jawa Barat, Indonesia

Doctoral Candidate of Mechanical Engineering

Department of Mechanical Engineering

Sulaksana Permana, Universitas Indonesia Depok 16424, Jawa Barat, Indonesia

Doctor of Engineering in Metallurgy and Materials

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

Johny Wahyuadi Soedarsono, Universitas Indonesia Depok 16424, Jawa Barat, Indonesia

Doctor of Engineering, Professor

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

References

  1. Lei, J., Wang, W., Song, M., Dong, B., Li, Z., Wang, C., Li, L. (2011). Ag/AgCl coated polyacrylonitrile nanofiber membranes: Synthesis and photocatalytic properties. Reactive and Functional Polymers, 71 (11), 1071–1076. doi: https://doi.org/10.1016/j.reactfunctpolym.2011.08.002
  2. Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J. (2018). Photocatalysis. Springer. doi: https://doi.org/10.1007/978-981-13-2113-9
  3. Bavykin, D. V., Friedrich, J. M., Walsh, F. C. (2006). Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18 (21), 2807–2824. doi: https://doi.org/10.1002/adma.200502696
  4. Zhang, Q., Lima, D. Q., Lee, I., Zaera, F., Chi, M., Yin, Y. (2011). A Highly Active Titanium Dioxide Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration. Angewandte Chemie International Edition, 50 (31), 7088–7092. doi: https://doi.org/10.1002/anie.201101969
  5. Muersha, W., Pozan Soylu, G. S. (2018). Effects of metal oxide semiconductors on the photocatalytic degradation of 4-nitrophenol. Journal of Molecular Structure, 1174, 96–102. doi: https://doi.org/10.1016/j.molstruc.2018.07.034
  6. Swaminathan, M. (2018). Semiconductor Oxide Nanomaterials as Catalysts for Multiple Applications. Handbook of Nanomaterials for Industrial Applications, 197–207. doi: https://doi.org/10.1016/b978-0-12-813351-4.00011-0
  7. Ramchiary, A. (2020). Metal-oxide semiconductor photocatalysts for the degradation of organic contaminants. Handbook of Smart Photocatalytic Materials, 23–38. doi: https://doi.org/10.1016/b978-0-12-819049-4.00006-4
  8. Li, R., Kobayashi, H., Guo, J., Fan, J. (2011). Visible-light-driven surface reconstruction of mesoporous TiO2: toward visible-light absorption and enhanced photocatalytic activities. Chemical Communications, 47 (30), 8584. doi: https://doi.org/10.1039/c1cc12464a
  9. Zhao, Y., Wang, Y., Xiao, G., Su, H. (2019). Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants. Chinese Journal of Chemical Engineering, 27 (6), 1416–1428. doi: https://doi.org/10.1016/j.cjche.2019.02.003
  10. Xing, Z., Zhang, J., Cui, J., Yin, J., Zhao, T., Kuang, J. et. al. (2018). Recent advances in floating TiO2-based photocatalysts for environmental application. Applied Catalysis B: Environmental, 225, 452–467. doi: https://doi.org/10.1016/j.apcatb.2017.12.005
  11. Wang, Y., Sun, C., Zhao, X., Cui, B., Zeng, Z., Wang, A. et. al. (2016). The Application of Nano-TiO2 Photo Semiconductors in Agriculture. Nanoscale Research Letters, 11 (1). doi: https://doi.org/10.1186/s11671-016-1721-1
  12. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114 (19), 9919–9986. doi: https://doi.org/10.1021/cr5001892
  13. Tan, L.-L., Chai, S.-P., Mohamed, A. R. (2012). Synthesis and Applications of Graphene-Based TiO2Photocatalysts. ChemSusChem, 5 (10), 1868–1882. doi: https://doi.org/10.1002/cssc.201200480
  14. Ozawa, K., Emori, M., Yamamoto, S., Yukawa, R., Yamamoto, S., Hobara, R. et. al. (2014). Electron–Hole Recombination Time at TiO2 Single-Crystal Surfaces: Influence of Surface Band Bending. The Journal of Physical Chemistry Letters, 5 (11), 1953–1957. doi: https://doi.org/10.1021/jz500770c
  15. Deshmane, V. G., Owen, S. L., Abrokwah, R. Y., Kuila, D. (2015). Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steam reforming of methanol. Journal of Molecular Catalysis A: Chemical, 408, 202–213. doi: https://doi.org/10.1016/j.molcata.2015.07.023
  16. Karafas, E. S., Romanias, M. N., Stefanopoulos, V., Binas, V., Zachopoulos, A., Kiriakidis, G., Papagiannakopoulos, P. (2019). Effect of metal doped and co-doped TiO2 photocatalysts oriented to degrade indoor/outdoor pollutants for air quality improvement. A kinetic and product study using acetaldehyde as probe molecule. Journal of Photochemistry and Photobiology A: Chemistry, 371, 255–263. doi: https://doi.org/10.1016/j.jphotochem.2018.11.023
  17. Niu, M., Cheng, D., Cao, D. (2013). Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S–O coupling for water splitting. International Journal of Hydrogen Energy, 38 (3), 1251–1257. doi: https://doi.org/10.1016/j.ijhydene.2012.10.109
  18. Štengl, V., Bakardjieva, S., Murafa, N. (2009). Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Materials Chemistry and Physics, 114 (1), 217–226. doi: https://doi.org/10.1016/j.matchemphys.2008.09.025
  19. Munir, B., Permana, S., Amilia, A., Maksum, A., Soedarsono, J. W. (2019). Initial Study for Cerium and Lanthanum Extraction from Bangka Tin Slag through NaOH and HClO4 Leaching. MATEC Web of Conferences, 269, 07003. doi: https://doi.org/10.1051/matecconf/201926907003
  20. Silva, A. M. T., Silva, C. G., Dražić, G., Faria, J. L. (2009). Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catalysis Today, 144 (1-2), 13–18. doi: https://doi.org/10.1016/j.cattod.2009.02.022" target="_blank">https://doi.org/10.1016/j.cattod.2009.02.022
  21. Nasir, M., Bagwasi, S., Jiao, Y., Chen, F., Tian, B., Zhang, J. (2014). Characterization and activity of the Ce and N co-doped TiO 2 prepared through hydrothermal method. Chemical Engineering Journal, 236, 388–397. doi: https://doi.org/10.1016/j.cej.2013.09.095
  22. Ali, K. A., Abdullah, A. Z., Mohamed, A. R. (2017). Visible light responsive TiO2 nanoparticles modified using Ce and La for photocatalytic reduction of CO2 : Effect of Ce dopant content. Applied Catalysis A: General, 537, 111–120. doi: https://doi.org/10.1016/j.apcata.2017.03.022
  23. Tbessi, I., Benito, M., Molins, E., LIorca, J., Touati, A., Sayadi, S., Najjar, W. (2019). Effect of Ce and Mn co-doping on photocatalytic performance of sol-gel TiO2. Solid State Sciences, 88, 20–28. doi: https://doi.org/10.1016/j.solidstatesciences.2018.12.004
  24. Alipanahpour Dil, E., Ghaedi, M., Asfaram, A., Mehrabi, F., Bazrafshan, A. A., Tayebi, L. (2019). Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of Basic Red 46 dye. Ultrasonics Sonochemistry, 58, 104702. doi: https://doi.org/10.1016/j.ultsonch.2019.104702
  25. Kim, H. S., Kim, D., Kwak, B. S., Han, G. B., Um, M.-H., Kang, M. (2014). Synthesis of magnetically separable core@shell structured NiFe2O4@TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting. Chemical Engineering Journal, 243, 272–279. doi: https://doi.org/10.1016/j.cej.2013.12.046
  26. Jing, J., Li, J., Feng, J., Li, W., Yu, W. W. (2013). Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts. Chemical Engineering Journal, 219, 355–360. doi: https://doi.org/10.1016/j.cej.2012.12.058
  27. Zhan, J., Zhang, H., Zhu, G. (2014). Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces. Ceramics International, 40 (6), 8547–8559. doi: https://doi.org/10.1016/j.ceramint.2014.01.069
  28. Mahesh, K. P. O., Kuo, D.-H. (2015). Synthesis of Ni nanoparticles decorated SiO2/TiO2 magnetic spheres for enhanced photocatalytic activity towards the degradation of azo dye. Applied Surface Science, 357, 433–438. doi: https://doi.org/10.1016/j.apsusc.2015.08.264
  29. MirzaHedayat, B., Noorisepehr, M., Dehghanifard, E., Esrafili, A., Norozi, R. (2018). Evaluation of photocatalytic degradation of 2,4-Dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles. Journal of Molecular Liquids, 264, 571–578. doi: https://doi.org/10.1016/j.molliq.2018.05.102
  30. Khodadadi, M., Ehrampoush, M. H., Ghaneian, M. T., Allahresani, A., Mahvi, A. H. (2018). Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photo- catalytic degradation of tetracycline in simulated wastewater. Journal of Molecular Liquids, 255, 224–232. doi: https://doi.org/10.1016/j.molliq.2017.11.137
  31. Liu, Y., Cherkasov, N., Gao, P., Fernández, J., Lees, M. R., Rebrov, E. V. (2017). The enhancement of direct amide synthesis reaction rate over TiO2@SiO2@NiFe2O4 magnetic catalysts in the continuous flow under radiofrequency heating. Journal of Catalysis, 355, 120–130. doi: https://doi.org/10.1016/j.jcat.2017.09.010
  32. Chen, C.-C., Fu, Y.-P., Hu, S.-H. (2015). Characterizations of TiO2/SiO2/Ni-Cu-Zn Ferrite Composite for Magnetic Photocatalysts. Journal of the American Ceramic Society, 98 (9), 2803–2811. doi: https://doi.org/10.1111/jace.13685
  33. Chen, C.-C., Jaihindh, D., Hu, S.-H., Fu, Y.-P. (2017). Magnetic recyclable photocatalysts of Ni-Cu-Zn ferrite@SiO2@TiO2@Ag and their photocatalytic activities. Journal of Photochemistry and Photobiology A: Chemistry, 334, 74–85. doi: https://doi.org/10.1016/j.jphotochem.2016.11.005
  34. Zhu, L.-P., Huang, C., Liu, J.-W., Bing, N.-C., Jin, H.-Y., Wang, L.-J. (2013). Synthesis and characterization of cage-like core–shell structured TiO2 hollow microspheres. Materials Letters, 106, 348–351. doi: https://doi.org/10.1016/j.matlet.2013.05.093
  35. Chen, J., Lin, S., Yan, G., Yang, L., Chen, X. (2008). Preparation and its photocatalysis of Cd1−xZnxS nano-sized solid solution with PAMAM as a template. Catalysis Communications, 9 (1), 65–69. doi: https://doi.org/10.1016/j.catcom.2007.05.022
  36. Paquin, F., Rivnay, J., Salleo, A., Stingelin, N., Silva-Acuña, C. (2015). Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. Journal of Materials Chemistry C, 3 (41), 10715–10722. doi: https://doi.org/10.1039/c5tc02043c
  37. Aghaei, R., Eshaghi, A. (2017). Optical and superhydrophilic properties of nanoporous silica-silica nanocomposite thin film. Journal of Alloys and Compounds, 699, 112–118. doi: https://doi.org/10.1016/j.jallcom.2016.12.327
  38. Karthick, S. N., Prabakar, K., Subramania, A., Hong, J.-T., Jang, J.-J., Kim, H.-J. (2011). Formation of anatase TiO2 nanoparticles by simple polymer gel technique and their properties. Powder Technology, 205 (1-3), 36–41. doi: https://doi.org/10.1016/j.powtec.2010.08.061
  39. Zhan, F., Liu, W., Li, H., Yang, Y., Wang, M. (2018). Ce-doped CdS quantum dot sensitized TiO2 nanorod films with enhanced visible-light photoelectrochemical properties. Applied Surface Science, 455, 476–483. doi: https://doi.org/10.1016/j.apsusc.2018.05.226
  40. Yu, T., Tan, X., Zhao, L., Yin, Y., Chen, P., Wei, J. (2010). Characterization, activity and kinetics of a visible light driven photocatalyst: Cerium and nitrogen co-doped TiO2 nanoparticles. Chemical Engineering Journal, 157 (1), 86–92. doi: https://doi.org/10.1016/j.cej.2009.10.051

Downloads

Published

2020-06-30

How to Cite

Fachruddin, F., Susanto, I., Chen, C.-C., Setijogiarto, N. E., Zainuri, F., Permana, S., & Soedarsono, J. W. (2020). Surface modification of magnetic TiO2 core-shell with doped cerium for enhancement of photocatalytic performance. Eastern-European Journal of Enterprise Technologies, 3(6 (105), 13–20. https://doi.org/10.15587/1729-4061.2020.203186

Issue

Section

Technology organic and inorganic substances