Modeling the process of radial-direct extrusion with expansion using a triangular kinematic module

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.203989

Keywords:

simulation of combined extrusion processes, kinematic module, energy method, deformation process

Abstract

It has been proposed to use the developed triangular kinematic module 2a with a curvilinear sloping boundary as an axial one, making it possible to describe the character of metal flow in the reversal zone to radial extrusion. Based on the energy method, we have derived the magnitudes of deformation force power inside the built kinematic module 2a, the power of friction forces at the border of the contact between a blank and a tool, and the power of cut forces with adjacent kinematic modules. The result is the obtained analytical expression of the reduced pressure for the deformation of the axial triangular kinematic module 2a with a sloping boundary, whose shape depends on the parameter α. We have analyzed the possibilities of optimizing the reduced deformation pressure for the parameter α under different ratios of geometric parameters of the module and friction conditions. Taking into consideration the shape of the adjacent kinematic module 3a, it has been proposed to use the resulting reduced pressure dependences to calculate the power modes of the combined sequential radial-longitudinal extrusion processes with the developed radial component of metal flow.

A comparative analysis has been performed of the estimation schemes EM-2a with the developed axial triangular kinematic module 2a and EM-2 with the use of the axial rectangular kinematic module 2 and experimental data from modeling the process of combined radial-direct extrusion with expansion. The data on a deformation effort derived from the EM-2a scheme (with the developed triangular module with a curvilinear boundary 2a) and EM-2 exceed those experimentally obtained by 12‒15 % and 15‒20 %, respectively. This confirms the rationality of using the developed axial kinematic module 2a with a curvilinear boundary instead of an axial rectangular kinematic module when modeling processes of the sequential radial-direct extrusion with the developed radial component of metal flow.

The resulting dependences of the reduced pressure of the module 2a deformation can be built into other estimation schemes of successive radial-longitudinal extrusion processes. As a result, the decrease in the obtained power parameters of the process could amount to 7‒10 % relative to the schemes involving the axial rectangular kinematic module 2

Author Biographies

Natalia Hrudkina, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

PhD

Department of Metal Forming

Leila Aliieva, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Technical Sciences, Associate Professor

Department of Metal Forming

Oleg Markov, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Technical Sciences, Professor, Head of Department

Department of Computerized Design and Modeling of Processes and Machines

Dmytro Kartamyshev, LEKR, LTD Oleksy Tykhoho str., 10, Kramatorsk, Ukraine, 84313

Engineer

Serhii Shevtsov, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

PhD

Department of Higher Mathematics

Mykola Kuznetsov, Donbas National Academy of Civil Engineering and Architecture Heroiv Nebesnoi Sotni str., 14, Kramatorsk, Ukraine, 84333

PhD

Department of Mechanical Engineering

References

  1. Aliev, I. S. (1988). Radial extrusion processes. Soviet Forging and Sheet Metal Stamping Technology, 6, 1–4.
  2. Bhaduri, A. (2018). Extrusion. Springer Series in Materials Science, 599–646. doi: https://doi.org/10.1007/978-981-10-7209-3_13
  3. Saffar, S., Malaki, M., Mollaei-Dariani, B. (2014). On the effects of eccentricity in precision forging process. UPB Scientific Bulletin, Series D: Mechanical Engineering, 76 (1), 123–138.
  4. Aliiev, I., Aliieva, L., Grudkina, N., Zhbankov, I. (2011). Prediction of the Variation of the Form in the Processes of Extrusion. Metallurgical and Mining Industry, 3 (7), 17–22.
  5. Cho, H. Y., Min, G. S., Jo, C. Y., Kim, M. H. (2003). Process design of the cold forging of a billet by forward and backward extrusion. Journal of Materials Processing Technology, 135 (2-3), 375–381. doi: https://doi.org/10.1016/s0924-0136(02)00870-1
  6. Ogorodnikov, V. А., Dereven’ko, I. А., Sivak, R. I. (2018). On the Influence of Curvature of the Trajectories of Deformation of a Volume of the Material by Pressing on Its Plasticity Under the Conditions of Complex Loading. Materials Science, 54 (3), 326–332. doi: https://doi.org/10.1007/s11003-018-0188-x
  7. Hrudkina, N., Aliieva, L., Abhari, P., Markov, O., Sukhovirska, L. (2019). Investigating the process of shrinkage depression formation at the combined radial-backward extrusion of parts with a flange. Eastern-European Journal of Enterprise Technologies, 5 (1 (101)), 49–57. doi: https://doi.org/10.15587/1729-4061.2019.179232
  8. Farhoumand, A., Ebrahimi, R. (2009). Analysis of forward–backward-radial extrusion process. Materials & Design, 30 (6), 2152–2157. doi: https://doi.org/10.1016/j.matdes.2008.08.025
  9. Seo, J. M., Jang, D. H., Min, K. H., Koo, H. S., Kim, S. H., Hwang, B. B. (2007). Forming Load Characteristics of Forward and Backward Tube Extrusion Process in Combined Operation. Key Engineering Materials, 340-341, 649–654. doi: https://doi.org/10.4028/www.scientific.net/kem.340-341.649
  10. Choi, H.-J., Choi, J.-H., Hwang, B.-B. (2001). The forming characteristics of radial–backward extrusion. Journal of Materials Processing Technology, 113 (1-3), 141–147. doi: https://doi.org/10.1016/s0924-0136(01)00703-8
  11. Perig, A. V. (2014). 2D upper bound analysis of ECAE through 2θ-dies for a range of channel angles. Materials Research, 17 (5), 1226–1237. doi: https://doi.org/10.1590/1516-1439.268114
  12. Perig, A. (2015). Two-parameter Rigid Block Approach to Upper Bound Analysis of Equal Channel Angular Extrusion Through a Segal 2θ-die. Materials Research, 18 (3), 628–638. doi: https://doi.org/10.1590/1516-1439.004215
  13. Noh, J., Hwang, B. B., Lee, H. Y. (2015). Influence of punch face angle and reduction on flow mode in backward and combined radial backward extrusion process. Metals and Materials International, 21 (6), 1091–1100. doi: https://doi.org/10.1007/s12540-015-5276-y
  14. Jamali, S. S., Faraji, G., Abrinia, K. (2016). Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes. The International Journal of Advanced Manufacturing Technology, 88 (1-4), 291–301. doi: https://doi.org/10.1007/s00170-016-8754-6
  15. Alyushin, Yu. A. (2012). Mehanika tverdogo tela v peremennyh Lagranzha. Moscow: Mashinostroenie, 192.
  16. Alieva, L. I., Kartamyshev, D. A., Grudkina, N. S., Chuchin, O. V. (2018). Tehnologicheskie protsessy izgotovleniya polyh detaley na osnove sposobov kombinirovannogo vydavlivaniya. Obrabotka materialov davleniem, 1 (46), 22–28.
  17. Hrudkina, N., Aliieva, L. (2020). Modeling of cold extrusion processes using kinematic trapezoidal modules. FME Transactions, 48 (2), 357–363. doi: https://doi.org/10.5937/fme2002357h
  18. Hrudkina, N., Aliieva, L., Abhari, P., Kuznetsov, M., Shevtsov, S. (2019). Derivation of engineering formulas in order to calculate energy-power parameters and a shape change in a semi-finished product in the process of combined extrusion. Eastern-European Journal of Enterprise Technologies, 2 (7 (98)), 49–57. doi: https://doi.org/10.15587/1729-4061.2019.160585
  19. Shestakov, N. A. (1998). Energeticheskie metody rascheta protsessov obrabotki metallov davleniem. Moscow: MGIU, 125.
  20. Chudakov, P. D. (1992). Verhnyaya otsenka moshchnosti plasticheskoy deformatsii s ispol'zovaniem minimiziruyushchey funktsii. Izvestiya vuzov. Mashinostroenie, 9, 13–15.
  21. Chudakov, P. D. (1979). O vychislenii moshchnosti plasticheskoy deformatsii. Izvestiya vuzov. Mashinostroenie, 7, 146–148.
  22. Stepanskiy, L. G. (1979). Raschety protsessov obrabotki metallov davleniem. Moscow: Mashinostroenie, 215.
  23. Vlasenko, K., Hrudkina, N., Reutova, I., Chumak, O. (2018). Development of calculation schemes for the combined extrusion to predict the shape formation of axisymmetric parts with a flange. Eastern-European Journal of Enterprise Technologies, 3 (1 (93)), 51–59. doi: https://doi.org/10.15587/1729-4061.2018.131766
  24. Aliieva, L., Hrudkina, N., Aliiev, I., Zhbankov, I., Markov, O. (2020). Effect of the tool geometry on the force mode of the combined radial-direct extrusion with compression. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 15–22. doi: https://doi.org/10.15587/1729-4061.2020.198433

Downloads

Published

2020-06-30

How to Cite

Hrudkina, N., Aliieva, L., Markov, O., Kartamyshev, D., Shevtsov, S., & Kuznetsov, M. (2020). Modeling the process of radial-direct extrusion with expansion using a triangular kinematic module. Eastern-European Journal of Enterprise Technologies, 3(1 (105), 17–22. https://doi.org/10.15587/1729-4061.2020.203989

Issue

Section

Engineering technological systems