Construction of an algorithm for the selection of rigid stops in steel­concrete beams under the action of a distributed load

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.204251

Keywords:

steel-concrete beam, rigid stop, stop step, effort in a stop, reduced rigidity, graphic-analytical method

Abstract

An algorithm has been developed to select rigid stops in steel-concrete beams under the action of distributed load. Concrete is connected rigidly to a steel sheet in order to perform the joint operation of the concrete and steel sheet. Such a connection in the beam is provided by rigid stops that prevent shifting efforts in the concrete and steel contact area. The efforts are determined through the turning angles between the two adjacent sections of the beam. A graph-analytical method for determining movements is used to determine the turning angles. In determining the deformations of a steel-concrete beam, the calculation is based on the reduced rigidities of cross-sections.

The purpose of this study is to optimize the structure of a steel-concrete beam by selecting the rational number and arrangement of rigid stops. This optimization would allow a more rational utilization of the structure's material ‒ concrete and steel. That would reduce the cost of operations and the quantity of materials required in the production, installation, and operation of the considered structures.

An earlier proposed algorithm for the selection of rigid stops in steel-concrete beams under the action of a concentrated force has been expanded for the case of an evenly distributed load. When selecting the number of rigid stops, it is assumed that the magnitude of the distributed load acting on a beam, the mechanical characteristics of materials (steel and concrete), as well as the span of the beam and the size of its cross-section, are kNown. In contrast to the beams with a concentrated force in the middle, where the forces abide by a linear law, in the beams with an evenly distributed load the efforts in a steel strip change in line with a square parabola. Therefore, while the same step has been obtained for stops, it is not possible to achieve a situation at which efforts in all stops have the same value

Author Biographies

Anatoliy Petrov, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Building and Civil Engineering

Andriy Paliy, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

Doctor of Agricultural Sciences, Associate Professor

Department of Technical Systems and Animal Husbandry Technologies

Mykhailo Pavliuchenkov, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Senior Lecturer

Department of Structural Mechanics and Hydraulics

Hennadii Tsyhanenko, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

Senior Lecturer

Department of Building Structures

Nadiia Khobot, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

Assistant

Department of Architecture and Engineering Studies

Ivan Vysochin, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

Doctor of Architecture, Professor

Department of Architecture and Engineering Studies

Oksana Yurchenko, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Lecturer

Department of Construction Technology

Oleksii Ovcharenko, Luhansk National Agrarian University Slobozhanska str., 68, Starobilsk, Ukraine, 92703

PhD, Associate Professor

Department of General Training

Dmytro Sopov, Luhansk National Agrarian University Slobozhanska str., 68, Starobilsk, Ukraine, 92703

Acting Director of the Educational Scientific Institute of Construction

Anatoliy Paliy, National Scientific Center «Institute of Experimental and Clinical Veterinary Medicine» Pushkinska str., 83, Kharkiv, Ukraine, 61023

Doctor of Veterinary Sciences, Professor

Laboratory of Veterinary Sanitation and Parasitology

References

  1. Xing, Y., Han, Q., Xu, J., Guo, Q., Wang, Y. (2016). Experimental and numerical study on static behavior of elastic concrete-steel composite beams. Journal of Constructional Steel Research, 123, 79–92. doi: https://doi.org/10.1016/j.jcsr.2016.04.023
  2. Patil, S. P., Sangle, K. K. (2016). Tests of steel fibre reinforced concrete beams under predominant torsion. Journal of Building Engineering, 6, 157–162. doi: https://doi.org/10.1016/j.jobe.2016.02.004
  3. Vandolovskyi, S. S., Kostyuk, T. O., Rachkovskyi, O. V., Plakhotnikova, I. A. (2018). Technology of creation of steelfibrobeton with high strength to stretchings. Scientific Works of Kharkiv National Air Force University, 2 (56), 126–131. doi: https://doi.org/10.30748/zhups.2018.56.18
  4. DBN V.2.6-160:2010. Stalezalizobetonni konstruktsiyi (2011). Kyiv: Minrehionbud Ukrainy, 93.
  5. TKP EN 1994-1-1-2009 (02250). Eurocode 4: Проектирование сталежелезобетонных конструкций. Ч Design of composite steel and concrete structures Part 1-1. General rules and rules for buildings (2010). Minsk: Minstroyarhitektury, 95.
  6. DSTU B V.2.6-216:2016. Rozrakhunok i konstruiuvannia ziednuvalnykh elementiv stale zalizobetonnykh konstruktsiy (2016). Kyiv: Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy, 40.
  7. Hsiao, P.-C., Lehman, D. E., Roeder, C. W. (2012). Improved analytical model for special concentrically braced frames. Journal of Constructional Steel Research, 73, 80–94. doi: https://doi.org/10.1016/j.jcsr.2012.01.010
  8. Mahmoud, A. M. (2016). Finite element modeling of steel concrete beam considering double composite action. Ain Shams Engineering Journal, 7 (1), 73–88. doi: https://doi.org/10.1016/j.asej.2015.03.012
  9. Luan, N. K., Bakhshi, H., Ronagh, H. R., Barkhordari, M. A., Amiri, G. G. (2011). Analytical solutions for the in-plane behavior of composite steel/concrete beams with partial shear interaction. Asian Journal of Civil Engineering, 12 (6), 751–771.
  10. Medvedev, V. N., Semeniuk, S. D. (2016). Durability and deformability of braced bending elements with external sheet reinforcement. Magazine of Civil Engineering, 3 (63), 3–15. doi: https://doi.org/10.5862/mce.63.1
  11. Zamaliev, F. S. (2018). Numerical and full-scale experiments of prestressed hybrid reinforced concrete-steel beams. Vestnik MGSU, 13 (3 (114)), 309–321. doi: https://doi.org/10.22227/1997-0935.2018.3.309-321
  12. Rakhmonov, A. D., Solovʹov, N. P., Pozdeev, V. M. (2014). Computer modeling for investigating the stress-strainstate of beams with hybrid reinforcement. Vestnik MGSU, 1, 187–195. doi: https://doi.org/10.22227/1997-0935.2014.1.187-195
  13. Utkin, V. A. (2010). The regulation of the neutral axis position when designing sections of steel reinforced concrete span structures. Vestnik Sibirskoy gosudarstvennoy avtomobil'no-dorozhnoy akademii, 4 (18), 55–60.
  14. Storozhenko, L. I., Lapenko, O. I., Horb, O. H. (2010). Konstruktsiyi zalizobetonnykh perekryttiv po profilnomu nastylu iz zabezpechenniam sumisnoi roboty betonu i stali za dopomohoiu skleiuvannia. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 662, 360–365.
  15. Torkatyuk, V. I., Zolotova, N. M., Mel'man, V. A. (2003). Ispol'zovanie akrilovyh kleev dlya soedineniya betonnyh i zhelezobetonnyh konstruktsiy. Municipal economy of cities, 51, 61–68.
  16. Storozhenko, L. I., Krupchenko, O. A. (2010). Stalezalizobetonni balky iz zalizobetonnym verkhnim poiasom. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 662, 354–360.
  17. Bobalo, T. V., Blikharskyi, Z. Ya., Ilnytskyi, B. M., Kramarchuk, A. P. (2011). Osoblyvosti roboty stalebetonnykh balok armovanykh sterzhnevoiu vysokomitsnoiu armaturoiu riznykh klasiv. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 697, 35–48.
  18. Vahnenko, P. F., Hilobok, V. G., Andreyko, N. T., Yarovoy, M. L. (1987). Raschet i konstruirovanie chastey zhilyh i obshchestvennyh zdaniy. Kyiv: Budlvel'nik, 424.
  19. Ying, H., Huawei, P., Xueyou, Q., Jun, P., Xiancun, L., Qiyun, P., Bao, L. (2017). Performance of Reinforced Concrete Beams Retrofitted by a Direct-Shear Anchorage Retrofitting System. Procedia Engineering, 210, 132–140. doi: https://doi.org/10.1016/j.proeng.2017.11.058
  20. John, A. T., Nwankwo, E., Orumu, S. T., Osuji, S. O. (2019). Structural Performance of Externally Strengthened Rectangular Reinforced Concrete Beams by Glued Steel Plate. European Journal of Engineering Research and Science, 4 (9), 101–106. doi: https://doi.org/10.24018/ejers.2019.4.9.1480
  21. Shkromada, O., Paliy, A., Nechyporenko, O., Naumenko, O., Nechyporenko, V., Burlaka, O. et. al. (2019). Improvement of functional performance of concrete in livestock buildings through the use of complex admixtures. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 14–23. doi: https://doi.org/10.15587/1729-4061.2019.179177
  22. Petrov, A., Pavliuchenkov, M., Nanka, A., Paliy, A. (2019). Construction of an algorithm for the selection of rigid stops in steel concrete beams. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 41–49. doi: https://doi.org/10.15587/1729-4061.2019.155469
  23. Petrov, A. N., Kobzeva, E. N., Krasyuk, A. G. (2015). Vybor optimal'nyh po stoimosti parametrov stalebetonnyh balok. Materialy III mizhnarodnoi naukovo-praktychnoi konferentsiyi. Kharkiv-Krasnyi Lyman, 330–336.

Downloads

Published

2020-06-30

How to Cite

Petrov, A., Paliy, A., Pavliuchenkov, M., Tsyhanenko, H., Khobot, N., Vysochin, I., Yurchenko, O., Ovcharenko, O., Sopov, D., & Paliy, A. (2020). Construction of an algorithm for the selection of rigid stops in steel­concrete beams under the action of a distributed load. Eastern-European Journal of Enterprise Technologies, 3(7 (105), 27–35. https://doi.org/10.15587/1729-4061.2020.204251

Issue

Section

Applied mechanics