An effect analysis of cooling water direction towards condensate oil from scrap tires

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.209900

Keywords:

counter flow, parallel flow, pyrolysis, condenser, heat transfer

Abstract

The application of pyrolysis for the thermal decomposition of tire waste can be taken as the ideal concept to reduce and recycle tire waste. The product of the process can produce condensate oil, a typical oil that is close to crude oil properties. The critical aspect of the pyrolysis process is the design of the reactor, particularly for the condenser where the rate of heat transfer contributes to the overall quality and quantity of the produced condensate oil. This study focused on the effect of water flow direction on the condensation process of pyrolysis gas. The quantity and quality of the produced oil are examined to observe the effect of the condensation process. Two different water flow directions are tested in the process, namely, counter flow and parallel flow direction. The effect of water flow direction in the condenser clearly affects the pyrolysis process to produce the condensate oil. Based on the production quantity, the counter flow condenser is able to produce 355 ml of condensate oil while the parallel flow one merely 290 ml. Based on the quality of the produced condensate oil, the counter flow condenser is generally better than the parallel flow one where the density, flash point and viscosity are close to crude oil properties. The rate of heat transfer from the condenser to the pyrolysis gas is the main factor that contributes to the quality and quantity of the condensate oil. The average heat transfer for the counter and parallel flow is 2,728 W and 1,865 W, respectively. It can be said that using the counter flow condenser for the pyrolysis reactor can improve the quality and quantity of the condensate oil

Author Biographies

Budhi M Suyitno, Universitas Pancasila

Doctor of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Erlanda Augupta Pane, Universitas Pancasila

Master of Mechanical Engineering, Assistant Professor

Department of Mechanical Engineering

Wina Libyawati, Universitas Pancasila

Master of Mechanical Engineering, Assistant Professor

Department of Mechanical Engineering

Chatrine Jelita, Universitas Pancasila

Bachelor Student

Department of Mechanical Engineering

Hendri Sukma, Universitas Pancasila

Master of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Ismail Ismail, Universitas Pancasila

Doctoral of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

References

  1. The ETRMA Statistics Report (2012). Belgium.
  2. Bekhiti, M., Trouzine, H., Asroun, A. (2014). Properties of Waste Tire Rubber Powder. Engineering, Technology & Applied Science Research, 4 (4), 669–672. doi: https://doi.org/10.48084/etasr.439
  3. Ouyang, S., Xiong, D., Li, Y., Zou, L., Chen, J. (2018). Pyrolysis of scrap tyres pretreated by waste coal tar. Carbon Resources Conversion, 1 (3), 218–227. doi: https://doi.org/10.1016/j.crcon.2018.07.003
  4. Zabaniotou, A. A., Stavropoulos, G. (2003). Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis, 70 (2), 711–722. doi: https://doi.org/10.1016/s0165-2370(03)00042-1
  5. Parthasarathy, P., Choi, H. S., Park, H. C., Hwang, J. G., Yoo, H. S., Lee, B.-K., Upadhyay, M. (2016). Influence of process conditions on product yield of waste tyre pyrolysis- A review. Korean Journal of Chemical Engineering, 33 (8), 2268–2286. doi: https://doi.org/10.1007/s11814-016-0126-2
  6. Wik, A., Dave, G. (2006). Acute toxicity of leachates of tire wear material to Daphnia magna – Variability and toxic components. Chemosphere, 64 (10), 1777–1784. doi: https://doi.org/10.1016/j.chemosphere.2005.12.045
  7. Torretta, V., Rada, E. C., Ragazzi, M., Trulli, E., Istrate, I. A., Cioca, L. I. (2015). Treatment and disposal of tyres: Two EU approaches. A review. Waste Management, 45, 152–160. doi: https://doi.org/10.1016/j.wasman.2015.04.018
  8. Venkatesan, H., Sivamani, S., Bhutoria, K., Vora, H. H. (2018). Experimental study on combustion and performance characteristics in a DI CI engine fuelled with blends of waste plastic oil. Alexandria Engineering Journal, 57 (4), 2257–2263. doi: https://doi.org/10.1016/j.aej.2017.09.001
  9. Choi, G.-G., Jung, S.-H., Oh, S.-J., Kim, J.-S. (2014). Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Processing Technology, 123, 57–64. doi: https://doi.org/10.1016/j.fuproc.2014.02.007
  10. Colom, X., Cañavate, J., Carrillo, F., Suñol, J. J. (2009). Effect of the particle size and acid pretreatments on compatibility and properties of recycled HDPE plastic bottles filled with ground tyre powder. Journal of Applied Polymer Science, 112 (4), 1882–1890. doi: https://doi.org/10.1002/app.29611
  11. Donatelli, A., Iovane, P., Molino, A. (2010). High energy syngas production by waste tyres steam gasification in a rotary kiln pilot plant. Experimental and numerical investigations. Fuel, 89 (10), 2721–2728. doi: https://doi.org/10.1016/j.fuel.2010.03.040
  12. Dai, X., Yin, X., Wu, C., Zhang, W., Chen, Y. (2001). Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy, 26 (4), 385–399. doi: https://doi.org/10.1016/s0360-5442(01)00003-2
  13. Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171–197. doi: https://doi.org/10.1016/j.tsep.2017.06.003
  14. Tan, V., De Girolamo, A., Hosseini, T., Alhesan, J. A., Zhang, L. (2018). Scrap tyre pyrolysis: Modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields. Waste Management, 76, 516–527. doi: https://doi.org/10.1016/j.wasman.2018.03.013
  15. Ucar, S., Karagoz, S., Ozkan, A. R., Yanik, J. (2005). Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel, 84 (14-15), 1884–1892. doi: https://doi.org/10.1016/j.fuel.2005.04.002
  16. Dı́ez, C., Martı́nez, O., Calvo, L. F., Cara, J., Morán, A. (2004). Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered. Waste Management, 24 (5), 463–469. doi: https://doi.org/10.1016/j.wasman.2003.11.006
  17. Kordoghli, S., Khiari, B., Paraschiv, M., Zagrouba, F., Tazerout, M. (2017). Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor. Waste Management, 67, 288–297. doi: https://doi.org/10.1016/j.wasman.2017.06.001
  18. Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Gardy, J., Nizami, A. S. (2018). Effect of advanced catalysts on tire waste pyrolysis oil. Process Safety and Environmental Protection, 116, 542–552. doi: https://doi.org/10.1016/j.psep.2018.03.024
  19. Li, L., Yan, B., Li, H., Yu, S., Liu, S., Yu, H., Ge, X. (2018). SO42−/ZrO2 as catalyst for upgrading of pyrolysis oil by esterification. Fuel, 226, 190–194. doi: https://doi.org/10.1016/j.fuel.2018.04.006
  20. Torres, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., Legarreta, J. A., Cabrero, M. A. et. al. (2000). Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained. Fuel, 79 (8), 897–902. doi: https://doi.org/10.1016/s0016-2361(99)00220-3
  21. Nkosi, E., Muzenda, N . (2014). A Review and Discussion of Waste Tyre Pyrolysis and Derived Products. World Congress on Engineering, WCE 2014, 2, 979–985.
  22. Palla, V. S. K. K., Papadikis, K., Gu, S. (2015). A numerical model for the fractional condensation of pyrolysis vapours. Biomass and Bioenergy, 74, 180–192. doi: https://doi.org/10.1016/j.biombioe.2015.01.020
  23. Williams, P. T., Besler, S., Taylor, D. T. (1990). The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel, 69 (12), 1474–1482. doi: https://doi.org/10.1016/0016-2361(90)90193-t
  24. Jelita, C. (2015). Design of Condenser on the Convert Machine of Waste Tire to Crude Oil. Universitas Negeri Jakarta.
  25. Liu, D., Jin, J., Gao, M., Xiong, Z., Stanger, R., Wall, T. (2018). A comparative study on the design of direct contact condenser for air and oxy-fuel combustion flue gas based on Callide Oxy-fuel Project. International Journal of Greenhouse Gas Control, 75, 74–84. doi: https://doi.org/10.1016/j.ijggc.2018.05.011
  26. Wang, J., Li, J. M., Hwang, Y. (2018). Modeling of film condensation flow in oval microchannels. International Journal of Heat and Mass Transfer, 126, 1194–1205. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.126
  27. Aishwarya, K. N., Sindhu, N. (2016). Microwave Assisted Pyrolysis of Plastic Waste. Procedia Technology, 25, 990–997. doi: https://doi.org/10.1016/j.protcy.2016.08.197
  28. Mastral, F. J., Esperanza, E., Garcı́a, P., Juste, M. (2002). Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. Journal of Analytical and Applied Pyrolysis, 63 (1), 1–15. doi: https://doi.org/10.1016/s0165-2370(01)00137-1
  29. Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D. et. al. (2008). Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. Energy & Fuels, 22 (1), 614–625. doi: https://doi.org/10.1021/ef700335k
  30. Bhale, P. V., Deshpande, N. V., Thombre, S. B. (2009). Improving the low temperature properties of biodiesel fuel. Renewable Energy, 34 (3), 794–800. doi: https://doi.org/10.1016/j.renene.2008.04.037
  31. Benjumea, P., Agudelo, J., Agudelo, A. (2008). Basic properties of palm oil biodiesel–diesel blends. Fuel, 87 (10-11), 2069–2075. doi: https://doi.org/10.1016/j.fuel.2007.11.004
  32. Özçimen, D., Karaosmanoğlu, F. (2004). Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy, 29 (5), 779–787. doi: https://doi.org/10.1016/j.renene.2003.09.006
  33. Lang, X., Dalai, A. K., Bakhshi, N. N., Reaney, M. J., Hertz, P. B. (2001). Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology, 80 (1), 53–62. doi: https://doi.org/10.1016/s0960-8524(01)00051-7
  34. Pereira, C. C., Pasa, V. M. D. (2005). Effect of Alcohol and Copper Content on the Stability of Automotive Gasoline. Energy & Fuels, 19 (2), 426–432. doi: https://doi.org/10.1021/ef049849h
  35. Najafi, G., Ghobadian, B., Tavakoli, T., Buttsworth, D. R., Yusaf, T. F., Faizollahnejad, M. (2009). Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Applied Energy, 86 (5), 630–639. doi: https://doi.org/10.1016/j.apenergy.2008.09.017
  36. Raheman, H., Ghadge, S. V. (2007). Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel, 86 (16), 2568–2573. doi: https://doi.org/10.1016/j.fuel.2007.02.019
  37. Bharathwaaj, R., Nagarajan, P. K., Kabeel, A. E., Madhu, B., Mageshbabu, D., Sathyamurthy, R. (2018). Formation, characterization and theoretical evaluation of combustion of biodiesel obtained from wax esters of A. Mellifera. Alexandria Engineering Journal, 57 (3), 1205–1215. doi: https://doi.org/10.1016/j.aej.2017.03.021
  38. Kareddula, V. K., Puli, R. K. (2018). Influence of plastic oil with ethanol gasoline blending on multi cylinder spark ignition engine. Alexandria Engineering Journal, 57 (4), 2585–2589. doi: https://doi.org/10.1016/j.aej.2017.07.015
  39. Saraswat, M., Chauhan, N. R. (2020). Comparative assessment of butanol and algae oil as alternate fuel for SI engines. Engineering Science and Technology, an International Journal, 23 (1), 92–100. doi: https://doi.org/10.1016/j.jestch.2019.04.002
  40. Rofiqulislam, M., Haniu, H., Rafiqulalambeg, M. (2008). Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel, 87 (13-14), 3112–3122. doi: https://doi.org/10.1016/j.fuel.2008.04.036

Downloads

Published

2021-04-12

How to Cite

Suyitno, B. M., Pane, E. A., Libyawati, W., Jelita, C., Sukma, H., & Ismail, I. (2021). An effect analysis of cooling water direction towards condensate oil from scrap tires . Eastern-European Journal of Enterprise Technologies, 2(6 (110), 30–37. https://doi.org/10.15587/1729-4061.2021.209900

Issue

Section

Technology organic and inorganic substances