Compensation of dynamic errors of video images with measuring information based on artificial neural networks

Authors

  • Юрій Олександрович Подчашинський Zhitomir State Technological University Chernyachovsky str., 103, Zhitomyr, Ukraine, 10005, Ukraine https://orcid.org/0000-0002-8344-6061
  • Оксана Олександрівна Шаповалова Zhitomir State Technological University Chernyachovsky str., 103, Zhitomyr, Ukraine, 10005, Ukraine https://orcid.org/0000-0001-6138-8991
  • Юрій Олександрович Шавурський Zhitomir State Technological University Chernyachovsky str., 103, Zhitomyr, Ukraine, 10005, Ukraine https://orcid.org/0000-0002-4590-4156

DOI:

https://doi.org/10.15587/1729-4061.2014.26274

Keywords:

geometric parameters, video image, dynamic errors, error compensation, artificial neural network

Abstract

Algorithmic methods of compensating the dynamic video image errors with measuring information were considered. For example, it can be a video image of industrial products made of natural stone. These products need to be accurately controlled by the geometric parameters, which define the quality and aesthetic appearance of the product (linear dimensions and angles of the outer contour and geometric parameters of the structural elements of the finished surface). When forming the video images, dynamic errors appear which affect the accuracy of the geometric parameters of the products. These errors are caused by a non-ideal optical system of a video image forming device (the influence of a scattering point function) and the products movement in relation to the device during the manufacturing process (blurring of contours in the video). It was proposed to use an adaptive linear neural network for compensating the dynamic errors. The neural network implements a filter that restores a video image, improves the playback quality of the product contours and accuracy of their geometrical parameters. Weighting coefficients of the filter are adjusted by training the neural network in accordance with the current parameters of the video image dynamic distortion. This improves the accuracy of determining the geometric parameters in the production conditions of measurements.

Author Biographies

Юрій Олександрович Подчашинський, Zhitomir State Technological University Chernyachovsky str., 103, Zhitomyr, Ukraine, 10005

Junior Member of Teaching

Department of computer-controlled control systems and automations

Оксана Олександрівна Шаповалова, Zhitomir State Technological University Chernyachovsky str., 103, Zhitomyr, Ukraine, 10005

Junior Member of Teaching

Department of computer-controlled control systems and automations

Юрій Олександрович Шавурський, Zhitomir State Technological University Chernyachovsky str., 103, Zhitomyr, Ukraine, 10005

Candidate of Science

Department of Automated Control of Technological Processes And Computer-Controlled Process Engineering’s

References

  1. Krivoruchko, A., Kupkіn, E., Podchashinsky, Yu., Remezova, O. (2005). Application of information and computer technology of the working of videoimages in mining and geological industry. Visnyk ZDTU. Tehnіcal science, 1 (32), 107–116.
  2. Smirnov, A. (1990). Extraction and processing of natural stone: a handbook. Moscow, USSR: Nedra, 445.
  3. Karasev, Yu. G., Bakka, N. T. (1997). Natural stone. Mining block and stone wall. St. Petersburg, Russian Federation: Univ. Mining of St. Petersburg, 412.
  4. Sychev, Yu. I., Berlin, Yu. Ya. (1989). Cut Stone. Moscow, USSR: Stroyizdat, 320.
  5. Osovskiy, S. (2002). Neural networks for information processing. Moscow, Russian Federation: Finance and Statistics, 344.
  6. Rudenko, O. G., Bodyanskiy, E. V. (2006). Artificial neural networks : a tutorial. Kharkov, Ukraine: Company SMІT, 404.
  7. Ornatskiy, P. P. (1983). Theoretical foundations of information and measuring equipment. Kyiv, USSR, Higher School, 455.
  8. Polіschuk, E. S., ed. (2003). Metrology and measuring technics: textbook. Lviv, Ukraine, Beskid Bіt, 544.
  9. Kozheshkurt, V. I., Yuzefovich, V. V. (2010). Research of schemes en-route filtering algorithms processing of information in systems for monitoring of dynamic objects. Recording, storage and processing of data (Ukraine), 12 (4), 3–12.
  10. Kononov, V. I., Fedorovskiy, A. D., Dubinskiy, G. P. (1981). Optical imaging systems. Kyiv, USSR, Technics, 134.
  11. Press, F. P. (1991). Photosensitive charge-coupled devices. Moscow, USSR: Radio and Communication, 264.
  12. Jähne, B. (2004). Practical Handbook on Image Processing for Scientific and Technical Applications, Second Edition, 571. doi:10.1201/9780849390302
  13. Gonzalez, R., Woods, R. (2005). Digital image processing. Moscow, USSR: Technosphere, 1072.
  14. Acharya, T., Ray, A. K. (2005). Image processing: Principles and applications. John Wiley & Sons, Inc, 448.
  15. Bertero, M., Boccacci, P. (1998). Introduction to inverse problems in imaging Bristol, Institute of Physics Publishing Ltd, 370.
  16. Jain, A. K. (1989). Fundamentals of digital image processing. Cliffs, NJ, Prentice Hall, 590.
  17. Vasilenko, G. I., Taratorin, A. M. (1986). Image restoration. Moscow, USSR, Radio and Communications, 304.
  18. Sіlagіn, S. V., Mesyura, V. I. (2010). Adaptive quality assessment bitmap graphics. Optoelectronic information and energy technologies, Ukraine, 20(2), 119-121.
  19. Rіznik, O. M. (2009). Dynamic recurrent neural networks. Mathematical Machines and Systems (Ukraine), 3, 3–26.
  20. Aleksandrov, A. G. (1989). Optimal and adaptive systems: a tutorial. Moscow, USSR, Higher School, 263.
  21. Dadzhion, D., Mersereau, R. (1988). Digital processing of multidimensional signals. Мoscow, USSR, Mir, 488.

Published

2014-07-18

How to Cite

Подчашинський, Ю. О., Шаповалова, О. О., & Шавурський, Ю. О. (2014). Compensation of dynamic errors of video images with measuring information based on artificial neural networks. Eastern-European Journal of Enterprise Technologies, 4(9(70), 26. https://doi.org/10.15587/1729-4061.2014.26274

Issue

Section

Information and controlling system