Estimating the failure probability of an instrument transformer cell in the high voltage distributing device using an expert-statistical method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210048

Keywords:

current transformer, disconnector, cell, fuzzy model, technical condition, failure probability

Abstract

The approach has been developed to determining the numerical value of a failure probability and to forecasting the resource of an instrument transformer cell at the time of observation. Underlying a given approach is the control over the main parameters that affect the technical condition (TC) of an instrument transformer cell in the distributing device of high voltage (DDHV). To determine a TC of the devices, a mathematical method of fuzzy modeling has been applied, which makes it possible to integrate the diagnostic parameters that are different in their nature. Building a fuzzy model involved the experience of experts in the relevant industry.

The relevance of the development of a given approach is predetermined by the functional importance of a current transformer. Its performance affects the accuracy of triggering the relay protection devices, as well as the accounting of electrical energy. Precise accounting of electric energy implies minimizing its losses and shows the path to energy savings. A special feature of this approach is that it takes into consideration the influence of TC of each piece of cell equipment on the probability of its failure in general. To account for the factors of random disturbances, an expert fuzzy model is refined by the probabilistic-statistical method.

An example of the DDHV instrument transformer cell in an electric-energy system has been used to substantiate the advantage of a given approach over the existing methods to control the technical condition of electrical equipment. The error in predicting the cell resource based on one parameter (thermal imaging examination) was Δf(D-02)=1–QD-02=0.364, or 36.4 %. When applying an expert-statistical model for determining the probability of a cell failure, the error was Δf(D-02)=1–Qapost=0.034, or 3.4 %. The application of a given approach has produced a more reliable estimate of the probability of cell failure.

Implementing the developed approach in the field of electrical equipment diagnosing could improve the reliability level of forecasting results. The constructed model could be applied in the automated systems that diagnose "on-line" the DDHV electric devices

Author Biographies

Serhii Domoroshchyn, Zaporizhzhia Polytechnic National University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

Postgraduate Student

Department of Electrical and Electronic Apparatus

Alexandr Sakhno, Zaporizhzhia Polytechnic National University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Electrical and Electronic Apparatus

References

  1. Borshchov, P. I. (2019). Increase accuracy of phase difference measurement at industrial frequency. Tekhnichna Elektrodynamika, 3, 85–91. doi: https://doi.org/10.15407/techned2019.03.085
  2. Borshchov, P. I., Obodovsky, V. D. (2014). Device for precision measuring of the dielectric parameters of the high voltage insulation under working voltage. Tekhnichna Elektrodynamika, 3, 97–99.
  3. Skrupskaya, L. S., Oliinyk, A. O., Sakhno, A. A. (2014). Model building for current transformer paper-oil insulation state diagnostics. Electrical Engineering & Electromechanics, 2, 48–51. doi: https://doi.org/10.20998/2074-272x.2014.2.11
  4. Beliaev, V. K., Panenko, H. N. (2016). Determination of insulation parameters of current transformers at multiple measurements in monitoring systems under working voltage. Electrical Engineering & Electromechanics, 5, 40–46. doi: https://doi.org/10.20998/2074-272x.2016.5.06
  5. Krieg, T. W., Napolitano, M. (2000). Implementation of On-Line Transformer Monitoring and Fault Diagnosis in ElectraNet SA. Proceedings of ICMEP. Wuhan, 25–26.
  6. Borsi, H. (2000). Gassing behavior of different insulating liquids for transformers. Electra, 188, 20–41.
  7. Reyes, O., Garcia-Colon, V. R., Lara, H., Robles, E., Guzman, M., Elizarraraz, F., Martinez, J. C. (2008). Abnormal Failure Rate on High Voltage Current Transformers Affected by Environmental Conditions. Conference Record of the 2008 IEEE International Symposium on Electrical Insulation. doi: https://doi.org/10.1109/elinsl.2008.4570321
  8. Fei, Y., Wang, X.-Q., Luo, C.-J. et. al. (2012). Type selection and structure of ±1000 kV ultra HVDC instrument transformer. Gaoya Dianqi/High Voltage Apparatus, 48 (1).
  9. Sun, C., Zhang, L., Yan, C., Li, C. et. al. (2018). On-site Error Calibration Technology Under High Current for 1 000 kV Current Transformer. Gaoya Dianqi/High Voltage Apparatus, 54 (6), 184–188. doi: http://doi.org/10.13296/j.1001-1609.hva.2018.06.028
  10. Zhou, T., Ruan, J., Liu, Y., Peng, S., Wang, B. (2020). Defect Diagnosis of Disconnector Based on Wireless Communication and Support Vector Machine. IEEE Access, 8, 30198–30209. doi: https://doi.org/10.1109/access.2020.2972010
  11. Shi, J., Xu, T., Yang, S., Li, B. (2017). Design and realization of high voltage disconnector condition monitoring system. Journal of Physics: Conference Series, 887, 012011. doi: https://doi.org/10.1088/1742-6596/887/1/012011
  12. Qiu, Z., Ruan, J., Huang, D., Huang, Y. (2014). Mechanical fault diagnosis of high voltage outdoor disconnector based on motor current signal analysis. 2014 International Conference on Power System Technology. doi: https://doi.org/10.1109/powercon.2014.6993501
  13. Lin, X., Cai, Q., Xu, J.-Y., Li, S. (2011). Large scale of electric field calculation of 1100 kV disconnector based on domain decomposition method. Gaoya Diangi/High Voltage Apparatus, 47 (2), 1–6.
  14. Qiu, Z., Huang, D., Zhang, E., Ruan, J., Zhang, Y. (2015). Mechanical faults analysis of high voltage disconnectors and review of diagnosis technology. Gaoya Dianqi/High Voltage Apparatus, 51 (8), 171–179. doi: http://doi.org/10.13296/j.1001-1609.hva.2015.08.029.
  15. Shi, J., Xu, T., Yang, S., Li, B. (2017). Design and realization of high voltage disconnector condition monitoring system. Journal of Physics: Conference Series, 887, 012011. doi: https://doi.org/10.1088/1742-6596/887/1/012011
  16. Kosterev, M., Litvinov, V. (2015). Development of an analytical estimation method of the fault risk in the power system. Eastern-European Journal of Enterprise Technologies, 4 (2 (76)), 44–50. doi: https://doi.org/10.15587/1729-4061.2015.47290
  17. Kosterev, M., Litvinov, V. (2018). Priority events determination for the risk-oriented management of electric power system. EUREKA: Physics and Engineering, 3, 21–32. doi: https://doi.org/10.21303/2461-4262.2018.00643
  18. Kosteriev, M. V., Bardyk, Ye. I. (2011). Pytannia pobudovy nechitkykh modelei otsinky tekhnichnoho stanu obiektiv elektrychnykh system. Kyiv: NTUU «KPI», 148.
  19. Shtovba, S. D. (2007). Proektirovanie nechetkih sistem sredstvami MATLAB. Moscow: Goryachaya liniya – telekom, 288.
  20. Saati, T. (1993). Prinyatie resheniy. Metod analiza ierarhiy. Moscow: «Radio i svyaz'», 278.
  21. SOU-N EE 20.302: 2007. Normy vyprobuvannia elektroobladnannia. Kyiv: OEP «HRIFRE», 278.
  22. DSTU EN 62271-102:2016. Prystroi kontrolni rozpodilchi vysokovoltni. Chastyna 102. Roziednuvachi ta uzemliuvalni peremykachi zminnoho strumu (EN 62271-102:2002, IDT). Zi zminamy ta popravkoiu.
  23. Venttsel', E. S. (1972). Teoriya veroyatnostey. Moscow: Nauka, 576.
  24. Sahno, A. A. (2010). Mathematical model for prediction of the remaining resource of current transformers of 330-750 kV with OIP insulation. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi istytut». Zbirnyk naukovykh prats. Tematychnyi vypusk: Problemy udoskonalennia elektrychnykh mashyn i aparativ. Teoriya i praktyka, 55, 97–106.
  25. Guk, Yu. B. (1990). Teoriya nadezhnosti v elektroenergetike. Leningrad: Energoatomizdat, 206.
  26. Bardyk, Ye. I. (2014). Modelling and assessment of chances of failure of power systems electrical equipment taking into account the after repair resource restoration level. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 3, 82–90.

Downloads

Published

2020-08-31

How to Cite

Domoroshchyn, S., & Sakhno, A. (2020). Estimating the failure probability of an instrument transformer cell in the high voltage distributing device using an expert-statistical method. Eastern-European Journal of Enterprise Technologies, 4(2 (106), 70–81. https://doi.org/10.15587/1729-4061.2020.210048