Applying a modified aluminum sulfate solution in the processes of drinking water preparation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210096

Keywords:

drinking water quality, modification of reagent solution, coagulation, aluminum sulfate, hydraulic size, coloration, suspended substances, water clarification, magnetic field, anode-dissolved iron

Abstract

This paper reports a study on the application of aluminum sulfate solution, modified by the magnetic field and electrocoagulation, in the processes of drinking water preparation. The modification of the coagulant solution makes it possible to intensify water purification processes, to reduce reagent consumption by 25–30 %. It has been found that a dose of the modified aluminum sulfate solution of 28–30 mg/dm3 improves the efficiency of removal of suspended substances and coloration by 35–40 %. The dosage of the conventional reagent solution was 40 mg/dm3 while reaching the same purification parameters.

Modifying a solution of aluminum sulfate with the magnetic field and electrocoagulation increases the hydraulic size of the coagulated suspension. A change in the hydraulic size in the suspension has been studied at different periods of the year. In winter, when treating water with the modified aluminum sulfate solution, there a decrease in the suspension content whose hydraulic size is 0.1 mm/s and less, from 89 % to 22 %. In this case, the content of suspended substances at settling decreases from 8.5–12.5 mg/dm3 to 5.6–8.3 mg/dm3. In spring, when using the modified coagulant solution, the content of suspension whose size is 0.1 mm/s and less decreased from 55 % to 15 %. In summer, there is an increase in the content of suspension whose size is 0.3–0.5 mm/, from 58 % (a conventional reagent solution) to 66 % (the modified reagent solution). This indicates an intensification of the coagulation of impurities and the clarification of water.

The experimental data testify to an increase in the effectiveness of discoloration of natural low-turbid colored water to 63.3–63.9 % for the modified reagent solution at 45.5 % for a conventional reagent solution.

A change in the bacteriological parameters has been determined: the effectiveness of the decrease in a microbial number grows from 11.6‒18.7 % to 18.6–25.1 %. In terms of a coli-index, the efficiency of purification grows from 16.6‒23.1 % to 23.0–29.5 %

Author Biographies

Stanislav Dushkin, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Applied Mechanics and Environmental Protection Technologies

Tamara Shevchenko, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Water and Wastewater Engineering

References

  1. Draginskiy, V. L., Alekseeva, L. P. (2000). Povyshenie effektivnosti reagentnoy obrabotki vody na vodoprovodnyh stantsiyah. Vodosnabzhenie i sanitarnaya tehnika, 5, 45–47.
  2. Dushkin, S. S., Martynov, S., Dushkin, S. S. (2019). Intensification of the contact clarifiers work during the drinking water preparation. Journal of Water and Land Development, 41 (1), 55–60. doi: https://doi.org/10.2478/jwld-2019-0027
  3. Volodchenko, O. V. (2002). Analiz metodov intensifikatsii raboty ochistnyh sooruzheniy. Kommunal'noe hozyaystvo gorodov, 36, 267–271. Available at: https://cutt.ly/bsGkEt7
  4. Onyango, L. A., Quinn, C., Tng, K. H., Wood, J. G., Leslie, G. (2015). A Study of Failure Events in Drinking Water Systems as a Basis for Comparison and Evaluation of the Efficacy of Potable Reuse Schemes. Environmental Health Insights, 9 (3), 11–18. doi: https://doi.org/10.4137/ehi.s31749
  5. Dushkin, S. S., Galkina, O. P. (2019). More Effective Clarification of Circulating Water at Coke Plants. Coke and Chemistry, 62 (10), 474–480. doi: https://doi.org/10.3103/s1068364x19100041
  6. Moskvichev, S. S., Mileshkin, S. I., Moskvicheva, A. V., Moskvicheva, E. V. (2019). The intensification of water purification plant work. IOP Conference Series: Materials Science and Engineering, 698, 055038. doi: https://doi.org/10.1088/1757-899x/698/5/055038
  7. Coward, T., Tribe, H., Harvey, A. P. (2018). Opportunities for process intensification in the UK water industry: A review. Journal of Water Process Engineering, 21, 116–126. doi: https://doi.org/10.1016/j.jwpe.2017.11.010
  8. Lin, J., Ye, W., Zhong, K., Shen, J., Jullok, N., Sotto, A., Van der Bruggen, B. (2016). Enhancement of polyethersulfone (PES) membrane doped by monodisperse Stöber silica for water treatment. Chemical Engineering and Processing - Process Intensification, 107, 194–205. doi: https://doi.org/10.1016/j.cep.2015.03.011
  9. Alabi, A., Chiesa, M., Garlisi, C., Palmisano, G. (2015). Advances in anti-scale magnetic water treatment. Environmental Science: Water Research & Technology, 1 (4), 408–425. doi: https://doi.org/10.1039/c5ew00052a
  10. Dushkin, S. S., Blagodarnaya, G. I. (2010). Povyshenie effektivnosti raboty gorodskih sistem vodosnabzheniya. Scientific Bulletin of Civil Engineering, 60, 315–319.
  11. Yevdoshenko, V. V., Dushkin, S. S., Hres, O. V., Kovalenko, O. M., Blahodarna, H. I. (2017). Pat. No. 118596 UA. Sposib ochystky pryrodnykh i stichnykh vod. No. a201702868; declareted: 27.03.2017; published: 10.08.2017, Bul. No. 15.
  12. Blahodarna, H. I., Tykhoniuk, V. O., Dushkin, S. S. (2001). Pat. No. 45258 UA. Sposib modyfikatsiyi filtruiuchoho zavantazhennia dlia osvitlennia pryrodnykh i stichnykh vod. No. 2001074832; declareted: 10.07.2001; published: 15.03.2002, Bul. No. 3.
  13. Dushkin, S. S. (2012). Ochistka malomutnyh vod vysokoy tsvetnosti. Scientific Bulletin of Civil Engineering, 71, 410–416.
  14. Sadet, A., Stavarache, C., Teleanu, F., Vasos, P. R. (2019). Water hydrogen uptake in biomolecules detected via nuclear magnetic phosphorescence. Scientific Reports, 9 (1). doi: https://doi.org/10.1038/s41598-019-53558-8
  15. Klassen, V. I. (1978). Omagnichivanie vodnyh sistem. Moscow: Himiya, 240. Available at: https://www.twirpx.com/file/176541/
  16. Ternovtsev, V. E. (1976). Magnitnye ustanovki v sistemah oborotnogo vodosnabzheniya. Kyiv: Budivelnyk, 88.
  17. Tebenihin, E. F., Gusev, B. T. (1970). Obrabotka vody magnitnym polem v teploenergetike. Moscow: Energiya, 144.
  18. Shevchenko, T. O., Epoian, S. M., Airapetian, T. S., Dushkin, S. S. (2012). Pat. No. 103698 UA. Prystriy dlia aktyvatsiyi rozchyniv reahentiv. No. a201203185; declareted: 19.03.2012; published: 11.11.2013, Bul. No. 21.
  19. Posobie po proektirovaniyu sooruzheniy dlya ochistki i podgotovki vody (k SNiP 2.04.02-84). Utverzhdeno prikazom NII KVOV AKH im. K. D. Pamfilova ot 9 aprelya 1985 g. No. 24. Available at: http://www.docload.ru/Basesdoc/2/2689/index.htm
  20. Dushkin, S. S. (2003). Resursosberegayushchie tehnologii ochistki prirodnyh i stochnyh vod. Kommunal'noe hozyaystvo gorodov, 51, 96–101.
  21. Blagodarnaya, G. I. (2002). Modifikatsiya zagruzki fil'tra aktivirovannym rastvorom flokulyanta. Kommunal'noe hozyaystvo gorodov, 43, 173–177.
  22. Korinko, I. V., Kobylianskyi, V. Ya., Panasenko, Yu. O. (2013). Kontrol yakosti vody. Kharkiv: KhNAHKH, 288.
  23. Keeley, J., Jarvis, P., Judd, S. J. (2014). Coagulant Recovery from Water Treatment Residuals: A Review of Applicable Technologies. Critical Reviews in Environmental Science and Technology, 44 (24), 2675–2719. doi: https://doi.org/10.1080/10643389.2013.829766

Downloads

Published

2020-08-31

How to Cite

Dushkin, S., & Shevchenko, T. (2020). Applying a modified aluminum sulfate solution in the processes of drinking water preparation. Eastern-European Journal of Enterprise Technologies, 4(10 (106), 26–36. https://doi.org/10.15587/1729-4061.2020.210096