Applying a modified aluminum sulfate solution in the processes of drinking water preparation
DOI:
https://doi.org/10.15587/1729-4061.2020.210096Keywords:
drinking water quality, modification of reagent solution, coagulation, aluminum sulfate, hydraulic size, coloration, suspended substances, water clarification, magnetic field, anode-dissolved ironAbstract
This paper reports a study on the application of aluminum sulfate solution, modified by the magnetic field and electrocoagulation, in the processes of drinking water preparation. The modification of the coagulant solution makes it possible to intensify water purification processes, to reduce reagent consumption by 25–30 %. It has been found that a dose of the modified aluminum sulfate solution of 28–30 mg/dm3 improves the efficiency of removal of suspended substances and coloration by 35–40 %. The dosage of the conventional reagent solution was 40 mg/dm3 while reaching the same purification parameters.
Modifying a solution of aluminum sulfate with the magnetic field and electrocoagulation increases the hydraulic size of the coagulated suspension. A change in the hydraulic size in the suspension has been studied at different periods of the year. In winter, when treating water with the modified aluminum sulfate solution, there a decrease in the suspension content whose hydraulic size is 0.1 mm/s and less, from 89 % to 22 %. In this case, the content of suspended substances at settling decreases from 8.5–12.5 mg/dm3 to 5.6–8.3 mg/dm3. In spring, when using the modified coagulant solution, the content of suspension whose size is 0.1 mm/s and less decreased from 55 % to 15 %. In summer, there is an increase in the content of suspension whose size is 0.3–0.5 mm/, from 58 % (a conventional reagent solution) to 66 % (the modified reagent solution). This indicates an intensification of the coagulation of impurities and the clarification of water.
The experimental data testify to an increase in the effectiveness of discoloration of natural low-turbid colored water to 63.3–63.9 % for the modified reagent solution at 45.5 % for a conventional reagent solution.
A change in the bacteriological parameters has been determined: the effectiveness of the decrease in a microbial number grows from 11.6‒18.7 % to 18.6–25.1 %. In terms of a coli-index, the efficiency of purification grows from 16.6‒23.1 % to 23.0–29.5 %References
- Draginskiy, V. L., Alekseeva, L. P. (2000). Povyshenie effektivnosti reagentnoy obrabotki vody na vodoprovodnyh stantsiyah. Vodosnabzhenie i sanitarnaya tehnika, 5, 45–47.
- Dushkin, S. S., Martynov, S., Dushkin, S. S. (2019). Intensification of the contact clarifiers work during the drinking water preparation. Journal of Water and Land Development, 41 (1), 55–60. doi: https://doi.org/10.2478/jwld-2019-0027
- Volodchenko, O. V. (2002). Analiz metodov intensifikatsii raboty ochistnyh sooruzheniy. Kommunal'noe hozyaystvo gorodov, 36, 267–271. Available at: https://cutt.ly/bsGkEt7
- Onyango, L. A., Quinn, C., Tng, K. H., Wood, J. G., Leslie, G. (2015). A Study of Failure Events in Drinking Water Systems as a Basis for Comparison and Evaluation of the Efficacy of Potable Reuse Schemes. Environmental Health Insights, 9 (3), 11–18. doi: https://doi.org/10.4137/ehi.s31749
- Dushkin, S. S., Galkina, O. P. (2019). More Effective Clarification of Circulating Water at Coke Plants. Coke and Chemistry, 62 (10), 474–480. doi: https://doi.org/10.3103/s1068364x19100041
- Moskvichev, S. S., Mileshkin, S. I., Moskvicheva, A. V., Moskvicheva, E. V. (2019). The intensification of water purification plant work. IOP Conference Series: Materials Science and Engineering, 698, 055038. doi: https://doi.org/10.1088/1757-899x/698/5/055038
- Coward, T., Tribe, H., Harvey, A. P. (2018). Opportunities for process intensification in the UK water industry: A review. Journal of Water Process Engineering, 21, 116–126. doi: https://doi.org/10.1016/j.jwpe.2017.11.010
- Lin, J., Ye, W., Zhong, K., Shen, J., Jullok, N., Sotto, A., Van der Bruggen, B. (2016). Enhancement of polyethersulfone (PES) membrane doped by monodisperse Stöber silica for water treatment. Chemical Engineering and Processing - Process Intensification, 107, 194–205. doi: https://doi.org/10.1016/j.cep.2015.03.011
- Alabi, A., Chiesa, M., Garlisi, C., Palmisano, G. (2015). Advances in anti-scale magnetic water treatment. Environmental Science: Water Research & Technology, 1 (4), 408–425. doi: https://doi.org/10.1039/c5ew00052a
- Dushkin, S. S., Blagodarnaya, G. I. (2010). Povyshenie effektivnosti raboty gorodskih sistem vodosnabzheniya. Scientific Bulletin of Civil Engineering, 60, 315–319.
- Yevdoshenko, V. V., Dushkin, S. S., Hres, O. V., Kovalenko, O. M., Blahodarna, H. I. (2017). Pat. No. 118596 UA. Sposib ochystky pryrodnykh i stichnykh vod. No. a201702868; declareted: 27.03.2017; published: 10.08.2017, Bul. No. 15.
- Blahodarna, H. I., Tykhoniuk, V. O., Dushkin, S. S. (2001). Pat. No. 45258 UA. Sposib modyfikatsiyi filtruiuchoho zavantazhennia dlia osvitlennia pryrodnykh i stichnykh vod. No. 2001074832; declareted: 10.07.2001; published: 15.03.2002, Bul. No. 3.
- Dushkin, S. S. (2012). Ochistka malomutnyh vod vysokoy tsvetnosti. Scientific Bulletin of Civil Engineering, 71, 410–416.
- Sadet, A., Stavarache, C., Teleanu, F., Vasos, P. R. (2019). Water hydrogen uptake in biomolecules detected via nuclear magnetic phosphorescence. Scientific Reports, 9 (1). doi: https://doi.org/10.1038/s41598-019-53558-8
- Klassen, V. I. (1978). Omagnichivanie vodnyh sistem. Moscow: Himiya, 240. Available at: https://www.twirpx.com/file/176541/
- Ternovtsev, V. E. (1976). Magnitnye ustanovki v sistemah oborotnogo vodosnabzheniya. Kyiv: Budivelnyk, 88.
- Tebenihin, E. F., Gusev, B. T. (1970). Obrabotka vody magnitnym polem v teploenergetike. Moscow: Energiya, 144.
- Shevchenko, T. O., Epoian, S. M., Airapetian, T. S., Dushkin, S. S. (2012). Pat. No. 103698 UA. Prystriy dlia aktyvatsiyi rozchyniv reahentiv. No. a201203185; declareted: 19.03.2012; published: 11.11.2013, Bul. No. 21.
- Posobie po proektirovaniyu sooruzheniy dlya ochistki i podgotovki vody (k SNiP 2.04.02-84). Utverzhdeno prikazom NII KVOV AKH im. K. D. Pamfilova ot 9 aprelya 1985 g. No. 24. Available at: http://www.docload.ru/Basesdoc/2/2689/index.htm
- Dushkin, S. S. (2003). Resursosberegayushchie tehnologii ochistki prirodnyh i stochnyh vod. Kommunal'noe hozyaystvo gorodov, 51, 96–101.
- Blagodarnaya, G. I. (2002). Modifikatsiya zagruzki fil'tra aktivirovannym rastvorom flokulyanta. Kommunal'noe hozyaystvo gorodov, 43, 173–177.
- Korinko, I. V., Kobylianskyi, V. Ya., Panasenko, Yu. O. (2013). Kontrol yakosti vody. Kharkiv: KhNAHKH, 288.
- Keeley, J., Jarvis, P., Judd, S. J. (2014). Coagulant Recovery from Water Treatment Residuals: A Review of Applicable Technologies. Critical Reviews in Environmental Science and Technology, 44 (24), 2675–2719. doi: https://doi.org/10.1080/10643389.2013.829766
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Stanislav Dushkin, Tamara Shevchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.