Development of a formulation for light stabilizers to protect dyed cotton knitted fabrics against light

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.211495

Keywords:

cotton knitwear, active dye, color differences, photodegradation kinetics, UV-absorber, antioxidant

Abstract

Mathematical planning of the experiment was used to develop a formulation for light stabilizers to improve the lightfastness of cotton knitwear coloration, dyed with active dyes, in order to produce comfortable and high-quality knitted clothes. The variance and factor analyses of the experiment's results were performed, which was carried out according to the scheme of the Latin cube of the first order involving the variation of factors – the type of light stabilizers and their concentration.

The technological mode of application of light stabilizers implied the impregnation of knitted fabric, drying, and thermal fixation of the material. For the dyed knitwear samples, we have investigated the individual influence of light stabilizers on changing the color of the dyed knitted fabric and the kinetics of coloration photodegradation. The samples were insolated using the device with mercury-tungsten lamp RF 1201 BS ("REFOND", China). Following the treatment and insolation, the general color differences of knitwear samples were determined in comparison with the non-treated material, using the TCR-200 colorimeter ("PCE Instruments", Germany).

The effectiveness of the developed formulation for light stabilizers was confirmed in the study of the lightfastness of knitted fabrics such as pique weave, 1+1 eraser, smooth surface, dyed with active dyes of the brand Bezaktiv ("CHT Bezema", Czech Republic). The result of our study is the developed formulation of light stabilizers consisting of 2,4-dihydroxy benzophenone, a UV-absorber, and hydroquinone, an antioxidant, at concentrations of 2 and 1 % of the material weight, respectively, which ensures an increase in the lightfastness of cotton knitwear coloration by 52.9‒66.8 % regardless of weave and active dye

Author Biographies

Olga Semeshko, Kherson National Technical University Beryslavske highway, 24, Kherson, Ukraine, 73008

PhD, Senior Researcher

Research Sector

Yulia Saribyekova, Kherson National Technical University Beryslavske highway, 24, Kherson, Ukraine, 73008

Doctor of Technical Sciences, Chief Researcher

Research Sector

Tatyana Asaulyuk, Kherson National Technical University Beryslavske highway, 24, Kherson, Ukraine, 73008

PhD, Junior Researcher

Research Sector

Nataliia Skalozubova, Kherson National Technical University Beryslavske highway, 24, Kherson, Ukraine, 73008

Junior Researcher

Research Sector

Sergey Myasnikov, Kherson National Technical University Beryslavske highway, 24, Kherson, Ukraine, 73008

PhD, Researcher

Research Sector

References

  1. World production of all fiber rises in 2018, natural fibers on the rise. Available at: https://www.fashionatingworld.com/new1-2/world-production-of-all-fiber-rises-in-2018-natural-fibers-on-the-rise
  2. Natural Fibres and the World Economy July 2019. Available at: https://dnfi.org/coir/natural-fibres-and-the-world-economy-july-2019_18043
  3. Uddin, F. (2019). Introductory Chapter: Textile Manufacturing Processes. Textile Manufacturing Processes. doi: https://doi.org/10.5772/intechopen.87968
  4. Knitted Fabric Market Size, Share & Trends Report. Knitted Fabric Market Size, Share & Trends Analysis Report By Product (Weft-knit, Warp-knit), By Application (Technical, Household), By Region, And Segment Forecasts, 2019-2025. Available at: https://www.grandviewresearch.com/industry-analysis/knitted-fabric-market
  5. Analitychni materialy haluzi lehkoi promyslovosti. Available at: https://ukrlegprom.org/ua/analytics
  6. Zimina, N. K., Dziubak, N. O., Cherniak, L. V. (2002). Tovaroznavstvo trykotazhnykh tovariv. Kyiv: KNTEU, 159.
  7. Global'niy solnechniy ul'trafioletoviy indeks (UFI). Available at: http://zmdosie.ru/likbez/chelovek/2532-globalnyj-solnechnyj-ultrafioletovyj-indeks-ufi
  8. Solnechnaya energiya. Available at: http://www.rea.org.ua/dieret/Solar/solar.html
  9. Krichevskiy, G. E. (1986). Fotohimicheskie prevrashcheniya krasiteley i svetostabilizatsiya okrashennyh materialov. Moscow: Himiya, 248.
  10. Batchelor, S. N., Carr, D., Coleman, C. E., Fairclough, L., Jarvis, A. (2003). The photofading mechanism of commercial reactive dyes on cotton. Dyes and Pigments, 59 (3), 269–275. doi: https://doi.org/10.1016/s0143-7208(03)00118-9
  11. Latif, Z., Liu, F., Wen, S., Long, S., Xiao, X.-Y., Lin, L.-N., Cai, Y.-J. (2015). Effect of Cationic UV Absorber on Light Fastness Property of Reactive Dye. Proceedings of the 2015 International Conference on Material Science and Applications. doi: https://doi.org/10.2991/icmsa-15.2015.103
  12. Thiagarajan, P., Nalankilli, G. (2010). A review on light fastness of reactive and other classes of dyes on cotton material. Colourage, 57, 47–52.
  13. Thiagarajan, P., Nalankilli, G. (2013). Improving light fastness of reactive dyed cotton fabric with antioxidant and UV absorbers. Indian Journal of Fibre & Textile Research, 38, 161–164.
  14. Ibrahim, N. A., Gouda, M., Husseiny, S. M., El-Gamal, A. R., Mahrous, F. (2009). UV-protecting and antibacterial finishing of cotton knits. Journal of Applied Polymer Science, 112 (6), 3589–3596. doi: https://doi.org/10.1002/app.29669
  15. Wong, W.-Y., Lam, J. K.-C., Kan, C.-W., Postle, R. (2016). Ultraviolet protection of weft-knitted fabrics. Textile Progress, 48 (1), 1–54. doi: https://doi.org/10.1080/00405167.2015.1126952
  16. Melchiorre Di Crescenzo, M., Zendri, E., Sánchez-Pons, M., Fuster-López, L., Yusá-Marco, D. J. (2014). The use of waterborne paints in contemporary murals: Comparing the stability of vinyl, acrylic and styrene-acrylic formulations to outdoor weathering conditions. Polymer Degradation and Stability, 107, 285–293. doi: https://doi.org/10.1016/j.polymdegradstab.2013.12.034
  17. Zaharchenko, A. S., Aleshina, A. A., Kozlova, O. V. (2012). Izuchenie svoystv plenkoobrazuyushchih polimerov, ispol'zuemyh v otdelke tekstil'nyh materialov. Izvestiya vysshih uchebnyh zavedeniy. Himiya i himicheskaya tehnologiya, 55 (3), 87–91.
  18. Verdu, J. (1994). Effect of Aging on the Mechanical Properties of Polymeric Materials. Journal of Macromolecular Science, Part A, 31 (10), 1383–1398. doi: https://doi.org/10.1080/10601329409350099
  19. Kolontarov, I. Ya. (1985). Ustoychivost' okrasok tekstil'nyh materialov k fiziko-himicheskim vozdeystviyam. Moscow: Legprombytizdat, 200.
  20. Ibrahim, N. A., El-Hossamy, M., Morsy, M. S., Eid, B. M. (2004). Development of new eco-friendly options for cotton wet processing. Journal of Applied Polymer Science, 93 (4), 1825–1836. doi: https://doi.org/10.1002/app.20500
  21. Chakraborty, J. N., Sharma, V., Gautam, P. (2014). Enhancing UV protection of cotton through application of novel UV absorbers. Journal of Textile and Apparel, Technology and Management, 9 (1).
  22. Mavrić, Z., Tomšič, B., Simončič, B. (2018). Recent advances in the ultraviolet protection finishing of textiles. TEKSTILEC, 61 (3), 201–220. doi: https://doi.org/10.14502/tekstilec2018.61.201-220
  23. Das, B. R., Ishtiaque, S. M., Rengasamy, R. S., Hati, S., Kumar, A. (2010). Ultraviolet Absorbers for Textiles. Research Journal of Textile and Apparel, 14 (1), 42–52. doi: https://doi.org/10.1108/rjta-14-01-2010-b005
  24. Sivakumar, A., Murugan, R., Sundaresan, K., Periyasamy, S. (2013). UV protection and self-cleaning finish for cotton fabric using metal oxide nanoparticles. Indian Journal of Fibre and Textile Research, 38 (3), 285–292.
  25. El-Naggar, M. E., Shaheen, T. I., Zaghloul, S., El-Rafie, M. H., Hebeish, A. (2016). Antibacterial Activities and UV Protection of the in Situ Synthesized Titanium Oxide Nanoparticles on Cotton Fabrics. Industrial & Engineering Chemistry Research, 55 (10), 2661–2668. doi: https://doi.org/10.1021/acs.iecr.5b04315
  26. El-Shafei, A., Abou-Okeil, A. (2011). ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydrate Polymers, 83 (2), 920–925. doi: https://doi.org/10.1016/j.carbpol.2010.08.083
  27. Ruban, A. V. (2016). Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Plant Physiology, 170 (4), 1903–1916. doi: https://doi.org/10.1104/pp.15.01935
  28. Holzmeister, P., Gietl, A., Tinnefeld, P. (2014). Geminate Recombination as a Photoprotection Mechanism for Fluorescent Dyes. Angewandte Chemie International Edition, 53 (22), 5685–5688. doi: https://doi.org/10.1002/anie.201310300
  29. Crews, P. C., Clark, D. J. (1990). Evaluating UV Absorbers and Antioxidants for Topical Treatment of Upholstery Fabrics. Textile Research Journal, 60 (3), 172–179. doi: https://doi.org/10.1177/004051759006000309
  30. Rather, L. J., Shabbir, M., Li, Q., Mohammad, F. (2019). Coloration, UV Protective, and Antioxidant Finishing of Wool Fabric Via Natural Dye Extracts: Cleaner Production of Bioactive Textiles. Environmental Progress & Sustainable Energy, 38 (5), 13187. doi: https://doi.org/10.1002/ep.13187
  31. Semeshko, О. Ya., Asaulyuk, T. S., Saribyekova, Yu. G. (2020). Investigation of the influence of light stabilizers on the lightfastness of cotton knit fabric dyed with reactive dyes. Bulletin of the Kyiv National University of Technologies and Design, 2 (144), 33–44. doi: http://doi.org/10.30857/1813-6796.2020.2.3
  32. Ahnazarova, S. L., Kafarov, V. V. (1978). Optimizatsiya eksperimenta v himii i himicheskoy tehnologii. Moscow: Vysshaya shkola, 320.
  33. Adler, Yu. P., Markova, E. V., Granovskiy, Yu. V. (1976). Planirovanie eksperimenta pri poiske optimal'nyh usloviy. Moscow: Nauka, 280.
  34. Wardle, B. (2009). Principles and Applications of Photochemistry. John Wiley & Sons, Ltd., 264.
  35. Morisawa, Y., Dyakov, Y. A., Tseng, C.-M., Lee, Y. T., Ni, C.-K. (2009). Photodissociation Dynamics of 2,5-Dihydroxyacetophenone. The Journal of Physical Chemistry A, 113 (1), 97–102. doi: https://doi.org/10.1021/jp806446z
  36. Nishiya, T., Yamauchi, S., Hirota, N., Baba, M., Hanazaki, I. (1986). Fluorescence studies of intramolecularly hydrogen-bonded o-hydroxyacetophenone, salicylamide, and related molecules. The Journal of Physical Chemistry, 90 (22), 5730–5735. doi: https://doi.org/10.1021/j100280a053
  37. Thiagarajana, P., Nalankillib, G. (2014). Effect of combined application ultraviolet absorber and antioxidant on light fastness of reactive dyed cotton fabric. Science International, 26 (1), 253–256.
  38. Newland, G. C., Tamblyn, J. W. (1964). Mechanism of ultraviolet stabilization of polymers by aromatic salicylates. Journal of Applied Polymer Science, 8 (5), 1949–1956. doi: https://doi.org/10.1002/app.1964.070080503
  39. Carey, F. A., Sundberg, R. J. (2000). Advanced Organic Chemistry: Part A: Structure and Mechanisms. Springer, 822. doi: https://doi.org/10.1007/b114222
  40. Rappoport, Z. (Ed.) (2003). The Chemistry of Phenols. John Wiley & Sons. doi: https://doi.org/10.1002/0470857277
  41. Veliká, B., Kron, I. (2013). Antioxidant properties of phenols against superoxide radicals. Monatshefte Für Chemie - Chemical Monthly, 144 (9), 1287–1290. doi: https://doi.org/10.1007/s00706-013-1008-5
  42. Viglianisi, C., Menichetti, S., Morelli, P., Baschieri, A., Amorati, R. (2018). From catechol‐tocopherol to catechol‐hydroquinone polyphenolic antioxidant hybrids. Heteroatom Chemistry, 29 (5-6), e21466. doi: https://doi.org/10.1002/hc.21466
  43. Kislitsina, M. N., Borisova, G. G. (2015). Vliyanie ekzogennyh difenolov na morfologicheskie harakteristiki vodnyh makrofitov. Rasteniya v usloviyah global'nyh i lokal'nyh prirodnoklimaticheskih i antropogennyh vozdeystviy: tezisy dokladov Vserossiyskoy nauchnoy konferentsii. Petrozavodsk: Karel'skiy nauchniy tsentr RAN, 254.

Downloads

Published

2020-10-06

How to Cite

Semeshko, O., Saribyekova, Y., Asaulyuk, T., Skalozubova, N., & Myasnikov, S. (2020). Development of a formulation for light stabilizers to protect dyed cotton knitted fabrics against light. Eastern-European Journal of Enterprise Technologies, 5(6 (107), 20–32. https://doi.org/10.15587/1729-4061.2020.211495

Issue

Section

Technology organic and inorganic substances