Determining a technique for transmitting measuring data on the spatial positioning of the piercing head in small-size installations during controlled soil piercing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.212345

Keywords:

piercing head, measuring system, waveguide path, inhomogeneity, ABCD matrix, transmission coefficient

Abstract

For laying of underground utility systems in urban conditions by the method of horizontally directed soil piercing, small-sized units are designed. Such units should have measurement systems for determining the spatial position of the piercing head. In known systems, the surface layer of the soil is used as a data transmission line for transmitting measurement information.

This method of transmitting information signals in urban conditions is not very acceptable. Ground-based objects reflect electromagnetic radiation of the head transmitter which leads to distortion of the directional diagram of the emitter and complicates the reliable reception of measurement information.

It was proposed to use an autonomous measuring system with an operating frequency of 5 GHz based on Wi-Fi technologies and an unconventional method of transmitting measurement information using hollow steel bars in the piercing unit itself. This transmission line has periodic discontinuities because of the bar design. These discontinuities accumulate as the piercing head advances. For the basic vibration type Н11, more accurate analytical expressions were obtained for calculating the power transfer coefficient of the measurement signal in such non-uniform lines. It was shown that inhomogeneity of the transmission line in comparison with its surface resistance does not significantly affect the transmission coefficient.

For example, damping in the line increased by 1.2 dB with the maximum length of inhomogeneity of 5 mm and the total length of jointed bars of 50 m. It has been theoretically proven that the range of soil piercing with reliable signal reception can be up to 50 meters.

The proposed method for transmitting information signals makes it possible to reduce the transmitter power, ensure noise immunity of the measuring system, and reliable reception of the measuring information throughout the entire piercing path

Author Biographies

Vitalyi Sakhatsky, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, ProfessorDepartment of Metrology and Life Safety

Nina Lyubymova, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Agrotechnology and Ecology

Vitaliy Vlasovets, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Tractors and Cars

Vladimir Suponyev, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Build and Travelling Machines

Oleksandr Koval, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Metrology and Life Safety

Artem Naumenko, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Construction and Civil Engineering

Tatyana Vlasenko, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD

Department of Production Organization, Business and Management

Yevhenii Chepusenko, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Metrology and Life Safety

References

  1. Bian, Z. J. L. (2014). Trenchless technology underground pipes. Machinery Industry Press, 187.
  2. Penchuk, V. A., Rudnev, V. K., Saenko, N. V., Suponev, V. N., Oleksyn, V. I., Balesniy, S. P., Vivchar, S. M. (2015). Soil thrust boring plant of static action with ring spacers of horizontal wells. Magazine of Civil Engineering, 54 (02), 100–107. doi: https://doi.org/10.5862/mce.54.11
  3. Isachenko, V. H. (1987). Inklinometriya skvazhin. Moscow: Nedra, 216.
  4. Tsybrjaeva, I. V. (2014). Method for zenith angle and drift direction determination and gyroscopic inclinometer. No. 2012151485/03, declareted: 30.11.2012; published: 20.02.2014, Bul. No. 5.
  5. Fisher, C. J. (2011). Using an Accelerometer for inclination Sensing. Available at: https://www.digikey.in/en/articles/using-an-accelerometer-for-inclination-sensing
  6. Hastak, M., Gokhale, S. (2009). Decision Tool for Selecting the Most Appropriate Technology for Underground Conduit Construction. Geological Engineering: Proceedings of the 1, 1–18. doi: https://doi.org/10.1115/1.802922.paper30
  7. Balyesniy, S. (2017). Features if soil thrust boring process. Bulletin of Kharkov National Automobile and Highway University, 76, 138–141.
  8. Balesniy, S. P. (2016). Experimental complex for research of the soil thrust process with correction of boring trajectory. Stroitel'stvo. Materialovedenie. Mashinostroenie, 88, 131–137.
  9. Allouche, E. N., Ariaratnam, S. T. (2002). Ariaratnam, State-Of-The-Art-Review Of No-Dig Technologies for New Installations. Pipeline Division Specialty Conference 2002. doi: https://doi.org/10.1061/40641(2002)55
  10. Cohen, A., Ariaratnam, S. T. (2017). Developing a Successful Specification for Horizontal Directional Drilling. Pipelines 2017. doi: https://doi.org/10.1061/9780784480878.050
  11. Suponiev, V. M. (2018). Stvorennia obladnannia dlia rozrobky horyzontalnykh sverdlovyn kombinovanymy sposobamy statychnoi diyi. Kharkiv: KhNADU, 196.
  12. Gusev, I., Chubarov, F. (2014). Application of controlled ground puncture in trenchless pipelaying. Potentsial sovremennoy nauki, 2, 30–34.
  13. Suponyev, V., Chepusenko, Y. (2019). Telemetry system for determining the coordinates of the piercing head in the ground. Bulletin of Kharkov National Automobile and Highway University, 84, 13–20. doi: https://doi.org/10.30977/bul.2219-5548.2019.84.0.13
  14. Shcherbakov, G. N., Antselevich, M. A., Udintsev, D. N. (2005). Vybor elektromagnitnogo metoda zondirovaniya dlya poiska obektov v tolshche ukryvayushchih sred. Spetsial'naya tehnika, 1, 21–25.
  15. Koval, O. A., Koval, A. O. (2017). Prostorovo rozpodileni intelektualni vymiriuvalni informatsiyni systemy. Kharkiv: Lider, 144.
  16. Lokatsionnye sistemy DigiTrak. Available at: http://www.k-ss.com.ua/list.php?data=locdt
  17. Syrskij, V. P., Nesterov, E. A., Pakhomov, A. D. (2010). Pat. No. RU 2442192 C1.The method of determination of mandrills or bores location in the ground and the installment for the performance of the above method. No. 2010131280/28; declareted: 26.07.2010; published: 10.02.2012.
  18. Pleshakova, E. V., Gavrilov, S. J. (2007). Pat. No. RU 2338876 С1. Method for determination of pneumatic puncher deviation angle from prescribed trajectory. No. 2007121127/03; declareted. 05.06.2007; published. 20.11.2008, Bul. No. 32.
  19. Ross, D. (2007). Wi-Fi. Besprovodnaya set'. Sankt-Peterburg: NT Press, 320.
  20. Sakhatsky, V., Lyubymova, N., Pusik, V., Pusik, L., Chepusenko, I. (2019). Prevention of Economic Losses with the help of the System of Control of Saving and Storing Bulk Cargoes in the Process of Train Movement. SHS Web of Conferences, 67, 02008. doi: https://doi.org/10.1051/shsconf/20196702008
  21. Sakhatskyi, V. D., Chepusenko, Ye. O. (2018). Vykorystannia Wi-Fi tekhnolohiy dlia rozrobky vymiriuvalnoi systemy vyznachennia koordynat prostorovoho polozhennia prokoliuiuchoi holovky pry beztransheinoi prokladky komunikatsiy. Tehnologiya priborostroeniya, 2, 37–41.
  22. Raspberry Pi 3 Model B+. Available at: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
  23. BMX055. Available at: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmx055-ds000.pdf
  24. CYW43455 Single-Chip 5G WiFi IEEE 802.11n/ac MAC/Baseband/ Radio with Integrated Bluetooth 5.0. Available at: https://www.cypress.com/file/358916/download
  25. Pchel'nikov, Yu. N. (2010). Opredelenie ekvivalentnyh parametrov volnovodov kruglogo i pryamougol'nogo secheniya. Radiotehnika i elektronika, 55 (1), 113–119.
  26. Fusko, V. (1990). SVCh tsepi. Analiz i avtomaticheskoe proektirovanie. Moscow: Radio i svyaz', 288.
  27. Grigor'ev, A. D. (1990). Elektrodinamika i tehnika SVCh. Moscow, 336.
  28. Gololobov, V. D., Kiril'chuk, V. B. (2005). Rasprostranenie radiovoln i antenno-fidernye ustroystva: Metod. Ch. 2: Fidernye ustroystva. Minsk: BGUIR, 299.
  29. Fal'kovskiy, O. I. (2009). Tehnicheskaya elektrodinamika. Sankt-Peterburg: Izdatel'stvo «Lan'», 432.
  30. Cherenkov, V. S. Ivanitskiy, A. M. (2006). Tehnicheskaya elektrodinamika: Konspekt lektsiy. Odessa: ONAZ im. A.S. Popova, 160.
  31. Shmatko, O. A., Usov, Yu. V. (1987). Elektricheskie i magnitnye svoystva metallov i splavov. Kyiv: Naukova dumka, 584.

Downloads

Published

2020-10-31

How to Cite

Sakhatsky, V., Lyubymova, N., Vlasovets, V., Suponyev, V., Koval, O., Naumenko, A., Vlasenko, T., & Chepusenko, Y. (2020). Determining a technique for transmitting measuring data on the spatial positioning of the piercing head in small-size installations during controlled soil piercing. Eastern-European Journal of Enterprise Technologies, 5(5 (107), 32–40. https://doi.org/10.15587/1729-4061.2020.212345

Issue

Section

Applied physics