Chemical cellulose-based fibers of decreased flammability

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.214507

Keywords:

fire protection of cellulose fiber, flame retardants, thermal destruction, scanning electron microscop

Abstract

The studies reported here have made it possible to determine the optimal ways of fire protection, in which the samples of modified complexite have reduced flammability. The sample with the ions of molybdenum (VI), treated with phosphoric acid, had the highest magnitude of oxygen index among five modified samples of the fiber. This is the most fire-protected sample, which contains three types of flame retardants: nitrogen (amidoxime groups of complexite, phosphorus (treatment with phosphoric acid) and molybdenum (VI). The obtained data indicate the chemical interaction of flame retardant with complexite.

The morphology of fibers and the process of their destruction are influenced by the introduction of flame retardants. Scanning electronic microphotographs show the existence of a morphological change of the surface at modification of the complexite samples with flame retardant. The introduction of flame retardant into complexite affects the process of thermal destruction of the samples in the air and argon media. At the same time, the introduction of molybdenum (VI) significantly reduces the thermal stability of fibers. It is likely that processes of thermal destruction can be catalyzed by metals both in the air medium and in the argon medium. The magnitudes of order of reaction of thermal decomposition at the transition from a fiber sample treated only with acids to the samples of complexite containing molybdenum (VI) decreases up to 0.38. At the same time, the values of activation energies E, kcal/mol, and the enthalpy of the process of thermal destruction of complexite DH, kcal/mole also decrease. The mechanical properties of fibers at the introduction of flame retardants into the fiber composition change insignificantly. Depending on the composition of flame retardants, rupture load decreases by 6–11 %, lengthening of the samples decreases by 6–16 %.

Thus, there are some grounds to suggest that it is possible to create fibrous materials based on cellulose with predetermined properties of reduced flammability.

Author Biographies

Natalia Korovnikova, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire and Technological Safety of Facilities and Technologies

Oleksandr Dubyna, Kharkiv National Agrarian University named after V. V. Dokuchaev p/o “Dokuchaevske-2”, Kharkiv dist., Kharkiv reg., Ukraine, 62483

PhD, Associate Professor

Department of General Chemistry

Volodymyr Oliinik, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire and Technological Safety of Facilities and Technologies

Yana Svishchova, Kharkiv National Agrarian University named after V. V. Dokuchaev p/o “Dokuchaevske-2”, Kharkiv dist., Kharkiv reg., Ukraine, 62483

PhD, Associate Professor

Department of General Chemistry

References

  1. Salmeia, K., Gaan, S., Malucelli, G. (2016). Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry. Polymers, 8 (9), 319. doi: https://doi.org/10.3390/polym8090319
  2. Besshaposhnikova, V., Mikryukova, O., Zagoruiko, M., Shteinle, V. (2018). Research of fire-protective modification influence on the structure and properties of blended fabrics. Materialy i tehnologii, 1 (1), 37–42. doi: http://doi.org/10.24411/2617-1503-2018-11007
  3. Syrbu, S. A., Burmistrov, V. A., Samoilov, D. B., Salikhova, A. H. (2011). Development fire proof composition for textile materials. Tehnologii tehnosfernoy bezopasnosti, 5 (39), 1–7.
  4. Khaidarov, I., Ismailov, R. (2020). The study of fire resistance of cellulose materials physically modified with flame retardant suspensions. Universum: Tehnicheskie nauki, 6 (75).
  5. Korovnikova, N. I., Oliynik, V. V. (2015). Ways to give Fire resistant cellulose-based fibers. Problemy pozharnoy bezopasnosti, 37, 116–119. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol37/Ppb_2015_37_22.pdf
  6. Korovnikova, N. I., Oliynik, V. V. (2016). Reducing fire hazards fibers based on cellulose and polyacrylonitrile. Problemy pozharnoy bezopasnosti, 40, 108–111. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol40/korovnikova.pdf
  7. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., Dubois, P. (2009). New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports, 63 (3), 100–125. doi: https://doi.org/10.1016/j.mser.2008.09.002
  8. Horrocks, A., Eivazi, S., Ayesh, M., Kandola, B. (2018). Environmentally Sustainable Flame Retardant Surface Treatments for Textiles: The Potential of a Novel Atmospheric Plasma/UV Laser Technology. Fibers, 6 (2), 31. doi: https://doi.org/10.3390/fib6020031
  9. Liu, Y., Pan, Y.-T., Wang, X., Acuña, P., Zhu, P., Wagenknecht, U. et. al. (2016). Effect of phosphorus-containing inorganic–organic hybrid coating on the flammability of cotton fabrics: Synthesis, characterization and flammability. Chemical Engineering Journal, 294, 167–175. doi: https://doi.org/10.1016/j.cej.2016.02.080
  10. Abou-Okeil, A., El-Sawy, S. M., Abdel-Mohdy, F. A. (2013). Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohydrate Polymers, 92 (2), 2293–2298. doi: https://doi.org/10.1016/j.carbpol.2012.12.008
  11. Carosio, F., Alongi, J., Malucelli, G. (2012). Layer by Layer ammonium polyphosphate-based coatings for flame retardancy of polyester–cotton blends. Carbohydrate Polymers, 88 (4), 1460–1469. doi: https://doi.org/10.1016/j.carbpol.2012.02.049
  12. Castrejón-Flores, J. L., Reyna-Luna, J., Flores-Martinez, Y. M., García-Ventura, M. I., Zamudio-Medina, A., Franco-Pérez, M. (2020). Characterizing the thermal degradation mechanism of two bisphosphoramidates by TGA, DSC, mass spectrometry and first-principle theoretical protocols. Journal of Molecular Structure, 1221, 128781. doi: https://doi.org/10.1016/j.molstruc.2020.128781
  13. Zhao, P., Li, X., Zhang, M., Liu, S., Liang, W., Liu, Y. (2014). Highly flame-retarding cotton fabrics with a novel phosphorus/nitrogen intumescent flame retardant. Korean Journal of Chemical Engineering, 31 (9), 1592–1597. doi: https://doi.org/10.1007/s11814-014-0095-2
  14. Korovnikova, N. I., Oliynik, V. V. (2014). Fire-retardant properties of fibrous materials based on cellulose. Problemy pozharnoy bezopasnosti, 35, 122–126. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol35/korovnikova_olejnik.pdf
  15. Korovnikova, N., Dubyna, O. (2017). Research into complexing properties of polyacrylonitrile complexite in the mixtures of water-dioxane. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 63–69. doi: https://doi.org/10.15587/1729-4061.2017.110135
  16. Korovnikova, N., Dubyna, O., Oliinik, V. (2019). Features of complex formation of a fibrous complexite with nickel ions in water–dioxane mixtures. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 15–22. doi: https://doi.org/10.15587/1729-4061.2019.162359
  17. Miroshnik, L. V., Korovnikova, N. I., Shabadash, Y. V. (2006). Stability of copper(II) complexes with cellulose complexite in water-dioxane mixtures. Russian Journal of Inorganic Chemistry, 51 (4), 649–655. doi: https://doi.org/10.1134/s0036023606040255
  18. Silva-Santos, M. C., Oliveira, M. S., Giacomin, A. M., Laktim, M. C., Baruque-Ramos, J. (2017). Flammability on textile of business uniforms: use of natural fibers. Procedia Engineering, 200, 148–154. doi: https://doi.org/10.1016/j.proeng.2017.07.022
  19. Piloyan, G. O., Bortnikov, N. S., Boeva, N. M. (2013). The Determination of Surface Thermodynamic Properties of Nanoparticles by Thermal Analysis. Journal of Modern Physics, 04 (07), 16–21. doi: https://doi.org/10.4236/jmp.2013.47a2003
  20. Meraldi, J., Aubry, J., Cizek, V., Ribiere, J., Schneider, A. (2000). Pat. No. US-0544249. Cellulose fibers with improved elongation at break, and methods for producing same. Available at: https://scienceon.kisti.re.kr/srch/selectPORSrchPatent.do?cn=USP2001076261689&dbt=USPA

Downloads

Published

2020-10-23

How to Cite

Korovnikova, N., Dubyna, O., Oliinik, V., & Svishchova, Y. (2020). Chemical cellulose-based fibers of decreased flammability. Eastern-European Journal of Enterprise Technologies, 5(6 (107), 33–39. https://doi.org/10.15587/1729-4061.2020.214507

Issue

Section

Technology organic and inorganic substances