Chemical cellulose-based fibers of decreased flammability
DOI:
https://doi.org/10.15587/1729-4061.2020.214507Keywords:
fire protection of cellulose fiber, flame retardants, thermal destruction, scanning electron microscopAbstract
The studies reported here have made it possible to determine the optimal ways of fire protection, in which the samples of modified complexite have reduced flammability. The sample with the ions of molybdenum (VI), treated with phosphoric acid, had the highest magnitude of oxygen index among five modified samples of the fiber. This is the most fire-protected sample, which contains three types of flame retardants: nitrogen (amidoxime groups of complexite, phosphorus (treatment with phosphoric acid) and molybdenum (VI). The obtained data indicate the chemical interaction of flame retardant with complexite.
The morphology of fibers and the process of their destruction are influenced by the introduction of flame retardants. Scanning electronic microphotographs show the existence of a morphological change of the surface at modification of the complexite samples with flame retardant. The introduction of flame retardant into complexite affects the process of thermal destruction of the samples in the air and argon media. At the same time, the introduction of molybdenum (VI) significantly reduces the thermal stability of fibers. It is likely that processes of thermal destruction can be catalyzed by metals both in the air medium and in the argon medium. The magnitudes of order of reaction of thermal decomposition at the transition from a fiber sample treated only with acids to the samples of complexite containing molybdenum (VI) decreases up to 0.38. At the same time, the values of activation energies E, kcal/mol, and the enthalpy of the process of thermal destruction of complexite DH, kcal/mole also decrease. The mechanical properties of fibers at the introduction of flame retardants into the fiber composition change insignificantly. Depending on the composition of flame retardants, rupture load decreases by 6–11 %, lengthening of the samples decreases by 6–16 %.
Thus, there are some grounds to suggest that it is possible to create fibrous materials based on cellulose with predetermined properties of reduced flammability.
References
- Salmeia, K., Gaan, S., Malucelli, G. (2016). Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry. Polymers, 8 (9), 319. doi: https://doi.org/10.3390/polym8090319
- Besshaposhnikova, V., Mikryukova, O., Zagoruiko, M., Shteinle, V. (2018). Research of fire-protective modification influence on the structure and properties of blended fabrics. Materialy i tehnologii, 1 (1), 37–42. doi: http://doi.org/10.24411/2617-1503-2018-11007
- Syrbu, S. A., Burmistrov, V. A., Samoilov, D. B., Salikhova, A. H. (2011). Development fire proof composition for textile materials. Tehnologii tehnosfernoy bezopasnosti, 5 (39), 1–7.
- Khaidarov, I., Ismailov, R. (2020). The study of fire resistance of cellulose materials physically modified with flame retardant suspensions. Universum: Tehnicheskie nauki, 6 (75).
- Korovnikova, N. I., Oliynik, V. V. (2015). Ways to give Fire resistant cellulose-based fibers. Problemy pozharnoy bezopasnosti, 37, 116–119. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol37/Ppb_2015_37_22.pdf
- Korovnikova, N. I., Oliynik, V. V. (2016). Reducing fire hazards fibers based on cellulose and polyacrylonitrile. Problemy pozharnoy bezopasnosti, 40, 108–111. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol40/korovnikova.pdf
- Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., Dubois, P. (2009). New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports, 63 (3), 100–125. doi: https://doi.org/10.1016/j.mser.2008.09.002
- Horrocks, A., Eivazi, S., Ayesh, M., Kandola, B. (2018). Environmentally Sustainable Flame Retardant Surface Treatments for Textiles: The Potential of a Novel Atmospheric Plasma/UV Laser Technology. Fibers, 6 (2), 31. doi: https://doi.org/10.3390/fib6020031
- Liu, Y., Pan, Y.-T., Wang, X., Acuña, P., Zhu, P., Wagenknecht, U. et. al. (2016). Effect of phosphorus-containing inorganic–organic hybrid coating on the flammability of cotton fabrics: Synthesis, characterization and flammability. Chemical Engineering Journal, 294, 167–175. doi: https://doi.org/10.1016/j.cej.2016.02.080
- Abou-Okeil, A., El-Sawy, S. M., Abdel-Mohdy, F. A. (2013). Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohydrate Polymers, 92 (2), 2293–2298. doi: https://doi.org/10.1016/j.carbpol.2012.12.008
- Carosio, F., Alongi, J., Malucelli, G. (2012). Layer by Layer ammonium polyphosphate-based coatings for flame retardancy of polyester–cotton blends. Carbohydrate Polymers, 88 (4), 1460–1469. doi: https://doi.org/10.1016/j.carbpol.2012.02.049
- Castrejón-Flores, J. L., Reyna-Luna, J., Flores-Martinez, Y. M., García-Ventura, M. I., Zamudio-Medina, A., Franco-Pérez, M. (2020). Characterizing the thermal degradation mechanism of two bisphosphoramidates by TGA, DSC, mass spectrometry and first-principle theoretical protocols. Journal of Molecular Structure, 1221, 128781. doi: https://doi.org/10.1016/j.molstruc.2020.128781
- Zhao, P., Li, X., Zhang, M., Liu, S., Liang, W., Liu, Y. (2014). Highly flame-retarding cotton fabrics with a novel phosphorus/nitrogen intumescent flame retardant. Korean Journal of Chemical Engineering, 31 (9), 1592–1597. doi: https://doi.org/10.1007/s11814-014-0095-2
- Korovnikova, N. I., Oliynik, V. V. (2014). Fire-retardant properties of fibrous materials based on cellulose. Problemy pozharnoy bezopasnosti, 35, 122–126. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol35/korovnikova_olejnik.pdf
- Korovnikova, N., Dubyna, O. (2017). Research into complexing properties of polyacrylonitrile complexite in the mixtures of water-dioxane. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 63–69. doi: https://doi.org/10.15587/1729-4061.2017.110135
- Korovnikova, N., Dubyna, O., Oliinik, V. (2019). Features of complex formation of a fibrous complexite with nickel ions in water–dioxane mixtures. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 15–22. doi: https://doi.org/10.15587/1729-4061.2019.162359
- Miroshnik, L. V., Korovnikova, N. I., Shabadash, Y. V. (2006). Stability of copper(II) complexes with cellulose complexite in water-dioxane mixtures. Russian Journal of Inorganic Chemistry, 51 (4), 649–655. doi: https://doi.org/10.1134/s0036023606040255
- Silva-Santos, M. C., Oliveira, M. S., Giacomin, A. M., Laktim, M. C., Baruque-Ramos, J. (2017). Flammability on textile of business uniforms: use of natural fibers. Procedia Engineering, 200, 148–154. doi: https://doi.org/10.1016/j.proeng.2017.07.022
- Piloyan, G. O., Bortnikov, N. S., Boeva, N. M. (2013). The Determination of Surface Thermodynamic Properties of Nanoparticles by Thermal Analysis. Journal of Modern Physics, 04 (07), 16–21. doi: https://doi.org/10.4236/jmp.2013.47a2003
- Meraldi, J., Aubry, J., Cizek, V., Ribiere, J., Schneider, A. (2000). Pat. No. US-0544249. Cellulose fibers with improved elongation at break, and methods for producing same. Available at: https://scienceon.kisti.re.kr/srch/selectPORSrchPatent.do?cn=USP2001076261689&dbt=USPA
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Natalia Korovnikova, Oleksandr Dubyna, Volodymyr Oliinik, Yana Svishchova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.