Patternsin the synthesis processes, the microstructure and properties of strontium-anorthite ceramics modified by glass of spodumene composition

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.216754

Keywords:

heat-resistant ceramics, Sr-anorthite, β-spodumene, glassy phase, baking, crystallization, microstructure of ceramics

Abstract

To create heat-resistant structural materials capable of operating at high temperatures (up to 1,400 °C), glass crystalline materials based on the SrO–Al2O3–SiO2 system are promising.

This paperreports the results of studying strontium-anorthite ceramics modified with boron-containing glass of the spodumene composition. It was established that in order to achieve a set of high physical and technical indicators of ceramics at reduced firing temperatures (1,200‒1,300 °C), it is necessary to introduce glass in the amount of 20‒30 % by weight. In this case, densely baked materials with low TCLE values were obtained (32.0–33.4)·10-7 degrees-7, which predetermine their high thermal resistance (not lower than 850 °C). The principal crystalline phase of the examined ceramics is a monoclinic modification of strontium anorthite that mainly forms its microstructure. The strontium anorthite crystals measuring from 1‒2 µm to 3–4 µm are tightly connected via thin layers of the residual glass phase. In the glass phase, the β-spodumene crystals the size of 0.1–0.3 µm are evenly distributed. The observed microstructure features of ceramics determine zero values of water absorption and open porosity, as well as high density values (2.40–2.50 g/cm3) and mechanical compression strength values (237–246 MPa). The dense microstructure also makes it possible to achieve high dielectric indicators (ε=4.4–4.8; tgδ=0.005–0.007) in an ultra-high-frequency electromagnetic field. Therefore, the designed materials are promising as radio-translucent materials, including structural ones. In addition, the enrichment of the residual glass phase with the refractory components of the SAS system in the process of firing the examined ceramics predetermines its increased resistance to high-temperature heating during operation

Author Biographies

Oleksandr Zaichuk, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Associate Professor

Department of Chemical Technology of Ceramics, Glass and Building Materials

Alexandra Amelina, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD

Department of Chemical Technology of Ceramics, Glass and Building Materials

Yurii Hordieiev, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD

Department of Chemical Technology of Ceramics, Glass and Building Materials

Yuliia Kalishenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Postgraduate Student

Department of Chemical Technology of Ceramics, Glass and Building Materials

Nataliia Sribniak, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Building Structures

Serhii Halushka, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

Senior Lecturer

Department of Architecture and Engineering Research

Dmytro Borodai, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Senior Lecturer

Department of Architecture and Engineering Research

Artem Borodai, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Senior Lecturer

Department of Architecture and Engineering Research

References

  1. Sebastian, M. T., Ubic, R., Jantunen, H. (2015). Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 60 (7), 392–412. doi: https://doi.org/10.1179/1743280415y.0000000007
  2. Pivinskii, Yu. E. (2017). The half of a century period of the domestic ceramics technology development. Part I. New refractories, 3, 105–112. doi: https://doi.org/10.17073/1683-4518-2017-3-105-112
  3. Zaychuk, A. V., Amelina, A. A. (2017). Search for the ways to improve the physical and technical parameters of quartz ceramics. Voprosy khimii i khimicheskoi tekhnologii, 6, 63–67.
  4. Khomenko, E. S., Zaichuk, A. V., Karasik, E. V., Kunitsa, A. A. (2018). Quartz ceramics modified by nanodispersed silica additive. Functional Materials, 25 (3), 613–618. doi: https://doi.org/10.15407/fm25.03.613
  5. Zanotto, E. D. (2010). A Bright future for glass-ceramics. American ceramic society bulletin, 89 (8), 19–27.
  6. Zaichuk, A. V., Amelina, A. A., Khomenko, Y. S., Baskevich, A. S., Kalishenko, Y. R. (2020). Heat-resistant ceramics of β-eucryptite composition: Peculiarities of production, microstructure and properties.Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 52–59. doi: https://doi.org/10.32434/0321-4095-2020-129-2-52-59
  7. Hotza, D., de Oliveira, A. P. N. (2010). New Silicate Glass-Ceramic Materials and Composites. Advances in Science and Technology, 68, 1–12. doi: https://doi.org/10.4028/www.scientific.net/ast.68.1
  8. Shamsudin, Z., Hodzic, A., Soutis, C., Hand, R. J., Hayes, S. A., Bond, I. P. (2011). Characterisation of thermo-mechanical properties of MgO–Al2O3–SiO2 glass ceramic with different heat treatment temperatures. Journal of Materials Science, 46 (17), 5822–5829. doi: https://doi.org/10.1007/s10853-011-5538-0
  9. Shchegoleva, N. E., Sarkisov, P. D., Orlova, L. A., Popovich, N. V. (2012). Physical-chemical and structural processes occurring during heat-treatment of strontium-aluminosilicate glass. Glass and Ceramics, 69 (3-4), 117–121. doi: https://doi.org/10.1007/s10717-012-9427-z
  10. Sung, Y.-M., Kim, S. (2000). Sintering and crystallization of off-stoichiometric SrO·Al2O3·2SiO2 glasses. Journal of materials science, 35 (17), 4293–4299. doi: http://doi.org/10.1023/A:1004880201847
  11. Chainikova, A. S., Vaganova, M. L., Shchegoleva, N. E., Lebedeva, Y. E. (2015). Technological aspects of fabrication of radiotransparent glass-ceramic materials based on high-temperature aluminosilicate systems (review). Proceedings of VIAM, 11. doi: https://doi.org/10.18577/2307-6046-2015-0-11-4-4
  12. Orlova, L. A., Popovich, N. V., Uvarova, N. E., Paleari, A., Sarkisov, P. D. (2012). High-temperature resistant glass-ceramics based on Sr-anorthite and tialite phases. Ceramics International, 38 (8), 6629–6634. doi: https://doi.org/10.1016/j.ceramint.2012.05.049
  13. Sung, Y.-M., Kwak, W.-C. (2002). Influence of various heating procedures on the sintered density of Sr-celsian glass-ceramic. Journal of materials science letters, 21 (11), 841–843. doi: https://doi.org/10.1023/A:1015710309425
  14. Ptáček, P., Šoukal, F., Opravil, T., Bartoníčková, E., Wasserbauer, J. (2016). The formation of feldspar strontian (SrAl2Si2O8) via ceramic route: Reaction mechanism, kinetics and thermodynamics of the process. Ceramics International, 42 (7), 8170–8178. doi: https://doi.org/10.1016/j.ceramint.2016.02.024
  15. Lisachuk, G. V., Kryvobok, R. V., Zakharov, A. V., Chefranov, E. V., Lisachuk, L. N. (2017). Development of new compositions of ceramic masses in SrO-Al2O3-SiO2 system. Functional Materials, 23 (4), 162–167. doi: https://doi.org/10.15407/fm24.01.162
  16. López-Cuevas, J., López-Badillo, C. M., Rodríguez-Galicia, J. L., Gutiérrez-Chavarría, C. A., Pech-Canul, M. I. (2013). Influence of mechanical activation on the synthesis of Sr-Celsian employing a precursor mixture containing coal fly ash. Boletín de La Sociedad Española de Cerámica y Vidrio, 52 (2), 98–104. doi: https://doi.org/10.3989/cyv.132013
  17. Lisachuk, G., Kryvobok, R., Zakharov, A., Tsovma, V., Lapuzina, O. (2017). Influence of complex activators of sintering on creating radiotransparent ceramics in SrO–Al2O3–SiO2. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 10–15. doi: https://doi.org/10.15587/1729-4061.2017.91110
  18. Chen, S., Zhu, D.-G., Cai, X.-S. (2014). Low-Temperature Densification Sintering and Properties of Monoclinic-SrAl2Si2O8 Ceramics. Metallurgical and Materials Transactions A, 45 (9), 3995–4001. doi: https://doi.org/10.1007/s11661-014-2344-8
  19. El-Kheshen, A. A., Zawrah, M. F., Hamzawy, E. M. A. (2018). Development of low thermal expansion mono crystalline Sr-feldspar phase via Sr-cordierite ceramic/borosilicate glass composite. Ceramics International, 44 (12), 13720–13726. doi: https://doi.org/10.1016/j.ceramint.2018.04.213
  20. Sung, Y.-M. (2000). Monocelsian formation in the SrO·Al2O3·2SiO2 glass. Journal of Materials Science Letters, 19 (6), 453–454. doi: https://doi.org/10.1023/A:1006724930508
  21. Uvarova, N. E., Orlova, L. A., Popovich, N. V. (2008). Nizkotemperaturniy sintez besshchelochnoy alyumosilikatnoy steklokeramiki. Uspehi v himii i himicheskoy tehnologii, 22 (7 (87)), 59–62.
  22. Zaichuk, A. V., Amelina, A. A., Karasik, Y. V., Khomenko, Y. S., Lementareva, V. A., Saltykov, D. Yu. (2019). Radio-transparent ceramic materials of spodumene-cordierite composition. Functional Materials, 26 (1), 174–181. doi: https://doi.org/10.15407/fm26.01.174
  23. Minakova, N. A., Zaichuk, A. V., Belyi, Y. I. (2008). The structure of borate glass. Glass and Ceramics, 65 (3-4), 70–73. doi: https://doi.org/10.1007/s10717-008-9017-2
  24. Hummel, F. A. (1984). Introduction to phase equilibria in ceramic systems. Routledge, 400. doi: https://doi.org/10.1201/9780203749944
  25. Zaychuk, A., Tsvetan, D., Amelina, A., Vedmead, D. (2017). Low-temperature glass-ceramics based on spodumene. Proceedings of University of Ruse, 56, 47–50.
  26. Andreev, M. V., Drobakhin, O. O., Privalov, Y. N., Saltykov, D. Y. (2014). Measurement of dielectric material properties using coupled biconical resonators. Telecommunications and Radio Engineering, 73 (11), 1017–1032. doi: https://doi.org/10.1615/telecomradeng.v73.i11.70
  27. Dyadenko, M. V., Gelai, A. I. (2017). Radio-Transparent Materials Based on Titanium Silicate Glass. Glass and Ceramics, 74 (7-8), 273–277. doi: https://doi.org/10.1007/s10717-017-9978-0
  28. Yurov, V. M., Portnov, V. S., Puzeeva, M. P., Sadchikov, A. V., Orazbaeva, Zh. M. (2017). Some questions mechanical properties of nanoparticles and nanomaterials. Fundamental research, 12 (2), 349–353.

Downloads

Published

2020-12-31

How to Cite

Zaichuk, O., Amelina, A., Hordieiev, Y., Kalishenko, Y., Sribniak, N., Halushka, S., Borodai, D., & Borodai, A. (2020). Patternsin the synthesis processes, the microstructure and properties of strontium-anorthite ceramics modified by glass of spodumene composition. Eastern-European Journal of Enterprise Technologies, 6(6 (108), 15–26. https://doi.org/10.15587/1729-4061.2020.216754

Issue

Section

Technology organic and inorganic substances