The kinetic parameters of the smoke gases purification process from carbon monoxide on a zeolite-based manganese oxide catalyst
DOI:
https://doi.org/10.15587/1729-4061.2020.217119Keywords:
carbon monoxide, oxidation kinetics, structural parameters, manganese dioxide, zeolite, clinoptiloliteAbstract
A modified MnO2 clinoptillolite was obtained by using the available zeolite rock from the Sokyrnytsia deposit (Khust district of the Zakarpattia region, Ukraine) using a simple technique of mixing solutions containing separately Mn2+ and MnO4-. It was determined that the total manganese content in the air-dry modified thermally untreated clinoptyllolite was 11.42 mg/g, which is 1.8 % in terms of MnO2.
Structural characteristics, namely, the pore size distribution and specific surface area as the main basic characteristics of the catalyst, were studied, which were obtained from the isotherms of low-temperature nitrogen adsorption-desorption. These studies are necessary to determine the limiting stage of CO oxidation.
It has been determined that the kinetics of the oxidation process is described by a first-order equation. Based on the obtained characteristics of the catalyst, the kinetic parameters of the process were calculated, namely, the effective and true rate constants and the activation energy, which is 31 kJ/mol. It has been proved that the oxidation reaction of carbon monoxide on an oxide-manganese catalyst proceeds in the intra-diffusion mode. This makes it possible, using the criterion dependences, namely, the Carberry criterion, which is less than 0.05, to assert that the reaction is not limited by the diffusion of CO from the gas stream to the outer surface of the catalyst. It is shown that the transport of carbon monoxide molecules inside the catalyst granules proceeds in the Knudsen regime.
The obtained scientific result in the form of a kinetic description of the catalytic oxidation of carbon monoxide with atmospheric oxygen on a manganese oxide catalyst based on zeolite is interesting from a theoretical point of view. From a practical point of view, the calculated kinetic parameters of this process make it possible to calculate a catalytic CO oxidation reactorReferences
- Petrov, A. Yu., Sinitsin, S. A. (2014). Flue gas catalytic detoxication in oil refining industry. Tehnologii nefti i gaza, 2 (91), 18–23.
- Karvatskii, A., Lazariev, T., Leleka, S., Mikulionok, I., Ivanenko, O. (2020). Determination of parameters of the carboncontaining materials gasification process in the rotary kiln cooler drum. Eastern-European Journal of Enterprise Technologies, 4 (8 (106)), 65–76. doi: https://doi.org/10.15587/1729-4061.2020.210767
- Leleka, S. V., Panov, Y. M., Karvatskii, A. Y., Vasylchemko, G. M., Mikulionok, I. O., Borshchik, S. O., Vahin, A. V. (2020). Development of energy-efficient and environmentally friendly linings and thermal insulation of electrode production furnaces. Energy Technologies & Resource Saving, 3, 21–34. doi: https://doi.org/10.33070/etars.3.2020.02
- Kursov, S. V. (2015). Monooksid ugleroda: fiziologicheskoe znachenie i toksikologiya. Meditsina neotlozhnyh sostoyaniy, 6 (69), 9–16.
- Parmon, V. N. (2000). Kataliticheskie tehnologii budushchego dlya vozobnovlyaemoy i netraditsionnoy energetiki. Himiya v interesah ustoychivogo razvitiya, 8 (4), 555–565.
- Vykydy zabrudniuiuchykh rechovyn i parnykovykh haziv u atmosferne povitria vid statsionarnykh dzherel zabrudnennia. Available at: http://www.ukrstat.gov.ua/operativ/operativ2018/ns/vzap/arch_vzrap_u.htm
- Ivanenko, O. (2020). Implementation of risk assessment for critical infrastructure protection with the use of risk matrix. ScienceRise, 2, 26–38. doi: https://doi.org/10.21303/2313-8416.2020.001340
- Ekolohichnyi pasport Zaporizkoi oblasti za 2019 rik (2020). Available at: https://mepr.gov.ua/files/docs/eco_passport/2019/%D0%97%D0%B0%D0%BF%D0%BE%D1%80%D1%96%D0%B7%D1%8C%D0%BA%D0%B0.pdf
- Patel, D. M., Kodgire, P., Dwivedi, A. H. (2020). Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review. Journal of Cleaner Production, 245, 118838. doi: https://doi.org/10.1016/j.jclepro.2019.118838
- Nishihata, Y., Mizuki, J., Akao, T., Tanaka, H., Uenishi, M., Kimura, M. et. al. (2002). Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature, 418 (6894), 164–167. doi: https://doi.org/10.1038/nature00893
- Schubert, M. M., Hackenberg, S., van Veen, A. C., Muhler, M., Plzak, V., Behm, R. J. (2001). CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction. Journal of Catalysis, 197 (1), 113–122. doi: https://doi.org/10.1006/jcat.2000.3069
- Panov, Y., Gomelia, N., Ivanenko, O., Vahin, A., Leleka, S. (2019). Estimation of the effect of temperature, the concentration of oxygen and catalysts on the oxidation of the thermoanthracite carbon material. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 43–50. doi: https://doi.org/10.15587/1729-4061.2019.162474
- Choi, K.-H., Lee, D.-H., Kim, H.-S., Yoon, Y.-C., Park, C.-S., Kim, Y. H. (2016). Reaction Characteristics of Precious-Metal-Free Ternary Mn–Cu–M (M = Ce, Co, Cr, and Fe) Oxide Catalysts for Low-Temperature CO Oxidation. Industrial & Engineering Chemistry Research, 55 (16), 4443–4450. doi: https://doi.org/10.1021/acs.iecr.5b04985
- Rakitskaya, T. L., Kiose, T. A., Vasylechko, V. O., Volkova, V. Y., Gryshchouk, G. V. (2011). Adsorption-desorption properties of clinoptilolites and the catalytic activity of surface Cu(II)–Pd(II) complexes in the reaction of carbon monoxide oxidation with oxygen. Chemistry of Metals and Alloys, 4 (3/4), 213–218. doi: https://doi.org/10.30970/cma4.0186
- Korablev, V. V., Chechevichkin, A. V., Boricheva, I. K., Samonin, V. V. (2017). Structure and morphological properties of clinoptilolite modified by manganese dioxide. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 3 (1), 63–70. doi: https://doi.org/10.1016/j.spjpm.2017.03.001
- Krylov, O. V. (1976). Kataliz nemetallami. Leningrad: Himiya, 240.
- Golodets, G. I. (1977). Geterogenno-kataliticheskie reaktsii s uchastiem molekulyarnogo kisloroda. Kyiv: Naukova dumka, 360.
- Ivanenko, O., Gomelya, N., Panov, Y., Overchenko, T. (2020). Тechnical solutions for reducing emissions of carbon monoxide with flue gases of furnaces for baking electrodes. Bulletin of the National Technical University «KhPI». Series: New Solutions in Modern Technology, 3 (5), 45–52. doi: https://doi.org/10.20998/2413-4295.2020.01.07
- Zaki, M. I., Hasan, M. A., Pasupulety, L., Kumari, K. (1997). Thermochemistry of manganese oxides in reactive gas atmospheres: Probing redox compositions in the decomposition course MnO2 → MnO. Thermochimica Acta, 303 (2), 171–181. doi: https://doi.org/10.1016/s0040-6031(97)00258-x
- Han, Y.-F., Chen, F., Zhong, Z., Ramesh, K., Chen, L., Widjaja, E. (2006). Controlled Synthesis, Characterization, and Catalytic Properties of Mn2O3 and Mn3O4 Nanoparticles Supported on Mesoporous Silica SBA-15. The Journal of Physical Chemistry B, 110 (48), 24450–24456. doi: https://doi.org/10.1021/jp064941v
- Iablokov, V., Frey, K., Geszti, O., Kruse, N. (2009). High Catalytic Activity in CO Oxidation over MnO x Nanocrystals. Catalysis Letters, 134 (3-4), 210–216. doi: https://doi.org/10.1007/s10562-009-0244-0
- Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., Han, Y.-F. (2008). Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catalysis Today, 131 (1-4), 477–482. doi: https://doi.org/10.1016/j.cattod.2007.10.061
- Wang, L.-C., Liu, Q., Huang, X.-S., Liu, Y.-M., Cao, Y., Fan, K.-N. (2009). Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Applied Catalysis B: Environmental, 88 (1-2), 204–212. doi: https://doi.org/10.1016/j.apcatb.2008.09.031
- Stobbe, E. R., de Boer, B. A., Geus, J. W. (1999). The reduction and oxidation behaviour of manganese oxides. Catalysis Today, 47 (1-4), 161–167. doi: https://doi.org/10.1016/s0920-5861(98)00296-x
- Ivanenko, O. I., Krysenko, D. A., Krysenko, T. V., Tobilko, V. Yu. (2020). Use of natural zeolite of sokyrnytsа deposit for obtaining oxide-manganese catalyst for carbon monoxide oxidation. Visnik of Kherson National Technical University, 3 (74), 26–37. doi: https://doi.org/10.35546/kntu2078-4481.2020.3.3
- Tarasevich, Y. I., Polyakov, V. E., Ivanova, Z. G., Krysenko, D. A. (2008). Obtaining and properties of clinoptilolite modified by manganese dioxide. Journal of Water Chemistry and Technology, 30 (2), 85–91. doi: https://doi.org/10.3103/s1063455x08020045
- Greg, S., Sing, K. (1984). Adsorbtsiya, udel'naya poverhnost', poristost'. Moscow: Mir, 310.
- Kolesnikova, L. G., Lankin, S. V., Yurkov, V. V. (2007). Ionniy perenos v klinoptilolite. Blagoveshchensk: Izdatel'stvo Blagoveshchenskogo gosudarstvennogo pedagogicheskogo universiteta, 113.
- Lopatkin, A. A. (1983). Teoreticheskie osnovy fizicheskoy adsorbtsii. Moscow: Moskovskiy gosudarstvenniy universitet, 344.
- Karnauhov, A. P. (1999). Adsorbtsiya. Tekstura dispersnyh i poristyh materialov. Novosibirsk: Nauka, 470.
- Merkle, A. B., Slaughter, M. (1968). Determination and refinement of the structure of heulandite. The Аmerican mineralogist, 53 (7), 1120–1138.
- Sargsyan, A. O., Sargsyan, O. A., Harutyunyan, L. R., Badalyan, G. G., Petrosyan, I. A., Harutyunyan, R. S. et. al. (2016). Phase transformations of natural zeolites under acid and alkali treatments. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2, 37–44.
- Itzel-Herna'ndez, G., Herna'ndez, M. A., Portillo, R., Petranovskii, V. P., Pestryakov, A. N., Rubio, E. (2018). Hierarchical structure of nanoporosity of mexican natural zeolites of clinoptilolite type. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329 (10), 107–117.
- Belchinskaya, L. I., Strelnikova, O. Yu., Khodosova, N. A., Ressner, F. (2013). Adsorption-structural, ion exchange and catalytic characteristics of natural and modified sorbent of Sokyrnytsky deposit, 4 (4), 420–426.
- Boreskov, G. K. (1988). Geterogenniy kataliz. Moscow: Nauka, 304.
- Centi, G., Arena, G. E., Perathoner, S. (2003). Nanostructured catalysts for NOx storage–reduction and N2O decomposition. Journal of Catalysis, 216 (1-2), 443–454. doi: https://doi.org/10.1016/s0021-9517(02)00072-6
- Wang, K., Zhong, P. (2010). A kinetic study of Co oxidation over the perovskite-like oxide LaSrNio4. Journal of the Serbian Chemical Society, 75 (2), 249–258. doi: https://doi.org/10.2298/jsc1002249w
- Savel'ev, I. V. (1970). Kurs obshchey fiziki. Vol. 1. Mehanika, kolebaniya i volny, molekulyarnaya fizika. Moscow: Izdatel'stvo «Nauka», 511.
- Mikulonok, I. O. (2014). Mekhanichni, hidromekhanichni i masoobminni protsesy ta obladnannia khimichnoi tekhnolohiyi. Kyiv: NTUU «KPI», 340.
- Ivanenko, O., Gomelya, N., Panov, Y. (2020). Evaluation of the influence of the catalysts application on the level of emissions of carbon monoxide in the manufacture of electrodes. Technology Audit and Production Reserves, 4 (3 (54)), 4–11. doi: https://doi.org/10.15587/2706-5448.2020.207483
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Olena Ivanenko, Andrii Trypolskyi, Oleksandr Khokhotva, Peter Strizhak, Serhii Leleka, Ihor Mikulionok
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.