The kinetic parameters of the smoke gases purification process from carbon monoxide on a zeolite-based manganese oxide catalyst

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217119

Keywords:

carbon monoxide, oxidation kinetics, structural parameters, manganese dioxide, zeolite, clinoptilolite

Abstract

A modified MnO2 clinoptillolite was obtained by using the available zeolite rock from the Sokyrnytsia deposit (Khust district of the Zakarpattia region, Ukraine) using a simple technique of mixing solutions containing separately Mn2+ and MnO4-. It was determined that the total manganese content in the air-dry modified thermally untreated clinoptyllolite was 11.42 mg/g, which is 1.8 % in terms of MnO2.

Structural characteristics, namely, the pore size distribution and specific surface area as the main basic characteristics of the catalyst, were studied, which were obtained from the isotherms of low-temperature nitrogen adsorption-desorption. These studies are necessary to determine the limiting stage of CO oxidation.

It has been determined that the kinetics of the oxidation process is described by a first-order equation. Based on the obtained characteristics of the catalyst, the kinetic parameters of the process were calculated, namely, the effective and true rate constants and the activation energy, which is 31 kJ/mol. It has been proved that the oxidation reaction of carbon monoxide on an oxide-manganese catalyst proceeds in the intra-diffusion mode. This makes it possible, using the criterion dependences, namely, the Carberry criterion, which is less than 0.05, to assert that the reaction is not limited by the diffusion of CO from the gas stream to the outer surface of the catalyst. It is shown that the transport of carbon monoxide molecules inside the catalyst granules proceeds in the Knudsen regime.

The obtained scientific result in the form of a kinetic description of the catalytic oxidation of carbon monoxide with atmospheric oxygen on a manganese oxide catalyst based on zeolite is interesting from a theoretical point of view. From a practical point of view, the calculated kinetic parameters of this process make it possible to calculate a catalytic CO oxidation reactor

Author Biographies

Olena Ivanenko, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Ecology and Technology of Plant Polymers

Andrii Trypolskyi, L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine Nauky ave., 31, Kyiv, Ukraine, 03028

Doctor of Chemical Sciences, Senior Researcher

Department of Catalytic Synthesis of Single-Carbon-Based Molecules

Oleksandr Khokhotva, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Associate Professor

Department of Ecology and Technology of Plant Polymers

Peter Strizhak, L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine Nauky ave., 31, Kyiv, Ukraine, 03028

Doctor of Chemical Sciences, Professor

Department of Catalytic Synthesis of Single-Carbon-Based Molecules

Serhii Leleka, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Researcher

Department of Chemical, Polymeric and Silicate Mechanical Engineering

Ihor Mikulionok, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Senior Researcher

Department of Chemical, Polymeric and Silicate Mechanical Engineering

References

  1. Petrov, A. Yu., Sinitsin, S. A. (2014). Flue gas catalytic detoxication in oil refining industry. Tehnologii nefti i gaza, 2 (91), 18–23.
  2. Karvatskii, A., Lazariev, T., Leleka, S., Mikulionok, I., Ivanenko, O. (2020). Determination of parameters of the carbon­containing materials gasification process in the rotary kiln cooler drum. Eastern-European Journal of Enterprise Technologies, 4 (8 (106)), 65–76. doi: https://doi.org/10.15587/1729-4061.2020.210767
  3. Leleka, S. V., Panov, Y. M., Karvatskii, A. Y., Vasylchemko, G. M., Mikulionok, I. O., Borshchik, S. O., Vahin, A. V. (2020). Development of energy-efficient and environmentally friendly linings and thermal insulation of electrode production furnaces. Energy Technologies & Resource Saving, 3, 21–34. doi: https://doi.org/10.33070/etars.3.2020.02
  4. Kursov, S. V. (2015). Monooksid ugleroda: fiziologicheskoe znachenie i toksikologiya. Meditsina neotlozhnyh sostoyaniy, 6 (69), 9–16.
  5. Parmon, V. N. (2000). Kataliticheskie tehnologii budushchego dlya vozobnovlyaemoy i netraditsionnoy energetiki. Himiya v interesah ustoychivogo razvitiya, 8 (4), 555–565.
  6. Vykydy zabrudniuiuchykh rechovyn i parnykovykh haziv u atmosferne povitria vid statsionarnykh dzherel zabrudnennia. Available at: http://www.ukrstat.gov.ua/operativ/operativ2018/ns/vzap/arch_vzrap_u.htm
  7. Ivanenko, O. (2020). Implementation of risk assessment for critical infrastructure protection with the use of risk matrix. ScienceRise, 2, 26–38. doi: https://doi.org/10.21303/2313-8416.2020.001340
  8. Ekolohichnyi pasport Zaporizkoi oblasti za 2019 rik (2020). Available at: https://mepr.gov.ua/files/docs/eco_passport/2019/%D0%97%D0%B0%D0%BF%D0%BE%D1%80%D1%96%D0%B7%D1%8C%D0%BA%D0%B0.pdf
  9. Patel, D. M., Kodgire, P., Dwivedi, A. H. (2020). Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review. Journal of Cleaner Production, 245, 118838. doi: https://doi.org/10.1016/j.jclepro.2019.118838
  10. Nishihata, Y., Mizuki, J., Akao, T., Tanaka, H., Uenishi, M., Kimura, M. et. al. (2002). Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature, 418 (6894), 164–167. doi: https://doi.org/10.1038/nature00893
  11. Schubert, M. M., Hackenberg, S., van Veen, A. C., Muhler, M., Plzak, V., Behm, R. J. (2001). CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction. Journal of Catalysis, 197 (1), 113–122. doi: https://doi.org/10.1006/jcat.2000.3069
  12. Panov, Y., Gomelia, N., Ivanenko, O., Vahin, A., Leleka, S. (2019). Estimation of the effect of temperature, the concentration of oxygen and catalysts on the oxidation of the thermoanthracite carbon material. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 43–50. doi: https://doi.org/10.15587/1729-4061.2019.162474
  13. Choi, K.-H., Lee, D.-H., Kim, H.-S., Yoon, Y.-C., Park, C.-S., Kim, Y. H. (2016). Reaction Characteristics of Precious-Metal-Free Ternary Mn–Cu–M (M = Ce, Co, Cr, and Fe) Oxide Catalysts for Low-Temperature CO Oxidation. Industrial & Engineering Chemistry Research, 55 (16), 4443–4450. doi: https://doi.org/10.1021/acs.iecr.5b04985
  14. Rakitskaya, T. L., Kiose, T. A., Vasylechko, V. O., Volkova, V. Y., Gryshchouk, G. V. (2011). Adsorption-desorption properties of clinoptilolites and the catalytic activity of surface Cu(II)–Pd(II) complexes in the reaction of carbon monoxide oxidation with oxygen. Chemistry of Metals and Alloys, 4 (3/4), 213–218. doi: https://doi.org/10.30970/cma4.0186
  15. Korablev, V. V., Chechevichkin, A. V., Boricheva, I. K., Samonin, V. V. (2017). Structure and morphological properties of clinoptilolite modified by manganese dioxide. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 3 (1), 63–70. doi: https://doi.org/10.1016/j.spjpm.2017.03.001
  16. Krylov, O. V. (1976). Kataliz nemetallami. Leningrad: Himiya, 240.
  17. Golodets, G. I. (1977). Geterogenno-kataliticheskie reaktsii s uchastiem molekulyarnogo kisloroda. Kyiv: Naukova dumka, 360.
  18. Ivanenko, O., Gomelya, N., Panov, Y., Overchenko, T. (2020). Тechnical solutions for reducing emissions of carbon monoxide with flue gases of furnaces for baking electrodes. Bulletin of the National Technical University «KhPI». Series: New Solutions in Modern Technology, 3 (5), 45–52. doi: https://doi.org/10.20998/2413-4295.2020.01.07
  19. Zaki, M. I., Hasan, M. A., Pasupulety, L., Kumari, K. (1997). Thermochemistry of manganese oxides in reactive gas atmospheres: Probing redox compositions in the decomposition course MnO2 → MnO. Thermochimica Acta, 303 (2), 171–181. doi: https://doi.org/10.1016/s0040-6031(97)00258-x
  20. Han, Y.-F., Chen, F., Zhong, Z., Ramesh, K., Chen, L., Widjaja, E. (2006). Controlled Synthesis, Characterization, and Catalytic Properties of Mn2O3 and Mn3O4 Nanoparticles Supported on Mesoporous Silica SBA-15. The Journal of Physical Chemistry B, 110 (48), 24450–24456. doi: https://doi.org/10.1021/jp064941v
  21. Iablokov, V., Frey, K., Geszti, O., Kruse, N. (2009). High Catalytic Activity in CO Oxidation over MnO x Nanocrystals. Catalysis Letters, 134 (3-4), 210–216. doi: https://doi.org/10.1007/s10562-009-0244-0
  22. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., Han, Y.-F. (2008). Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catalysis Today, 131 (1-4), 477–482. doi: https://doi.org/10.1016/j.cattod.2007.10.061
  23. Wang, L.-C., Liu, Q., Huang, X.-S., Liu, Y.-M., Cao, Y., Fan, K.-N. (2009). Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Applied Catalysis B: Environmental, 88 (1-2), 204–212. doi: https://doi.org/10.1016/j.apcatb.2008.09.031
  24. Stobbe, E. R., de Boer, B. A., Geus, J. W. (1999). The reduction and oxidation behaviour of manganese oxides. Catalysis Today, 47 (1-4), 161–167. doi: https://doi.org/10.1016/s0920-5861(98)00296-x
  25. Ivanenko, O. I., Krysenko, D. A., Krysenko, T. V., Tobilko, V. Yu. (2020). Use of natural zeolite of sokyrnytsа deposit for obtaining oxide-manganese catalyst for carbon monoxide oxidation. Visnik of Kherson National Technical University, 3 (74), 26–37. doi: https://doi.org/10.35546/kntu2078-4481.2020.3.3
  26. Tarasevich, Y. I., Polyakov, V. E., Ivanova, Z. G., Krysenko, D. A. (2008). Obtaining and properties of clinoptilolite modified by manganese dioxide. Journal of Water Chemistry and Technology, 30 (2), 85–91. doi: https://doi.org/10.3103/s1063455x08020045
  27. Greg, S., Sing, K. (1984). Adsorbtsiya, udel'naya poverhnost', poristost'. Moscow: Mir, 310.
  28. Kolesnikova, L. G., Lankin, S. V., Yurkov, V. V. (2007). Ionniy perenos v klinoptilolite. Blagoveshchensk: Izdatel'stvo Blagoveshchenskogo gosudarstvennogo pedagogicheskogo universiteta, 113.
  29. Lopatkin, A. A. (1983). Teoreticheskie osnovy fizicheskoy adsorbtsii. Moscow: Moskovskiy gosudarstvenniy universitet, 344.
  30. Karnauhov, A. P. (1999). Adsorbtsiya. Tekstura dispersnyh i poristyh materialov. Novosibirsk: Nauka, 470.
  31. Merkle, A. B., Slaughter, M. (1968). Determination and refinement of the structure of heulandite. The Аmerican mineralogist, 53 (7), 1120–1138.
  32. Sargsyan, A. O., Sargsyan, O. A., Harutyunyan, L. R., Badalyan, G. G., Petrosyan, I. A., Harutyunyan, R. S. et. al. (2016). Phase transformations of natural zeolites under acid and alkali treatments. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2, 37–44.
  33. Itzel-Herna'ndez, G., Herna'ndez, M. A., Portillo, R., Petranovskii, V. P., Pestryakov, A. N., Rubio, E. (2018). Hierarchical structure of nanoporosity of mexican natural zeolites of clinoptilolite type. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329 (10), 107–117.
  34. Belchinskaya, L. I., Strelnikova, O. Yu., Khodosova, N. A., Ressner, F. (2013). Adsorption-structural, ion exchange and catalytic characteristics of natural and modified sorbent of Sokyrnytsky deposit, 4 (4), 420–426.
  35. Boreskov, G. K. (1988). Geterogenniy kataliz. Moscow: Nauka, 304.
  36. Centi, G., Arena, G. E., Perathoner, S. (2003). Nanostructured catalysts for NOx storage–reduction and N2O decomposition. Journal of Catalysis, 216 (1-2), 443–454. doi: https://doi.org/10.1016/s0021-9517(02)00072-6
  37. Wang, K., Zhong, P. (2010). A kinetic study of Co oxidation over the perovskite-like oxide LaSrNio4. Journal of the Serbian Chemical Society, 75 (2), 249–258. doi: https://doi.org/10.2298/jsc1002249w
  38. Savel'ev, I. V. (1970). Kurs obshchey fiziki. Vol. 1. Mehanika, kolebaniya i volny, molekulyarnaya fizika. Moscow: Izdatel'stvo «Nauka», 511.
  39. Mikulonok, I. O. (2014). Mekhanichni, hidromekhanichni i masoobminni protsesy ta obladnannia khimichnoi tekhnolohiyi. Kyiv: NTUU «KPI», 340.
  40. Ivanenko, O., Gomelya, N., Panov, Y. (2020). Evaluation of the influence of the catalysts application on the level of emissions of carbon monoxide in the manufacture of electrodes. Technology Audit and Production Reserves, 4 (3 (54)), 4–11. doi: https://doi.org/10.15587/2706-5448.2020.207483

Downloads

Published

2020-12-31

How to Cite

Ivanenko, O., Trypolskyi, A., Khokhotva, O., Strizhak, P., Leleka, S., & Mikulionok, I. (2020). The kinetic parameters of the smoke gases purification process from carbon monoxide on a zeolite-based manganese oxide catalyst. Eastern-European Journal of Enterprise Technologies, 6(6 (108), 50–58. https://doi.org/10.15587/1729-4061.2020.217119

Issue

Section

Technology organic and inorganic substances