Determining of the influence of reactor parameters on the uniformity of mixing substrate components

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217159

Keywords:

linear speed, uniformity of mixing, blade, friction coefficient, substrate humidity, fermentation

Abstract

One of the issues related to the fermentation of substrates made from biological raw materials in drum-type reactors is the difficulty of ensuring uniform mixing of their components, which adversely affects the quality of the compost produced.

Uniform mixing is achieved if the components of the material are fully dispersed at the free surface of the substrate segment. It was established that in order to fully disperse the particles of the substrate by a descending flow, it is necessary that the particles, which last fall from the blade, should reach the contact point of the drum’s shell and the free surface of the substrate. To describe the established conditions, a mathematical model has been built, which links the equation of the boundary of the blockage of substrate particles in the drum and their fall along a parabolic trajectory. The equations are given to determine the kinematic parameters of the mixing process, provided that the substrate particles are dispersed in the transverse and longitude cross-sections of the drum.

The result of solving the differential equations is the equation of the linear speed of particle movement on the curved surface of the drum blade at which their full dispersal at the free surface of the substrate segment is achieved.

In order to conduct this research, an experimental drum reactor was designed and manufactured. It was experimentally determined at which humidity values of the substrate and the angular velocity of the reactor drum the uniformity of the distribution of components in the substrate reaches maximum values while the resulting compost meets the acting requirements in terms of microbiological indicators. The adequacy of the mathematical model to the experimental data has been confirmed.

The reported results are important because knowing the physicochemical properties of the substrate makes it possible to set such parameters of the process and equipment at which the high uniformity of mixing of substrate components is ensured, which affects the compost quality

Author Biographies

Gennadii Golub, National University of Life and Environmental Sciences of Ukraine Heroyiv Oborony str., 15, Kyiv, Ukraine, 03041

Doctor of Technical Sciences, Professor

Department of Tractors, Automobiles and Bioenergosystems

Mykola Trehub, Bila Tserkva National Agrarian University Soborna sq., 8/1, Bila Tserkva, Ukraine, 09117

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of mechanization and electrification of agricultural production

Anna Holubenko, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

Assistant

Department of Electrification, Automation of Production and Engineering Ecology

Nataliya Tsyvenkova, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008 National University of Life and Environmental Sciences of Ukraine Heroyiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Associate Professor

Department of Mechanics and Agroecosystems Engineering

Department of Tractors, Automobiles and Bioenergosystems

 

Viacheslav Chuba, National University of Life and Environmental Sciences of Ukraine Heroyiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Associate Professor

Department of Tractors, Automobiles and Bioenergosystems

Marina Tereshchuk, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

Postgraduate Student

Department of Mechanics and Agroecosystems Engineering

References

  1. Ryabchenko, O., Golub, G., Turčeková, N., Adamičková, I., Zapototskyi, S. (2017). Sustainable business modeling of circular agriculture production: case study of circular bioeconomy. Journal of Security and Sustainability Issues, 7 (2), 301–309. doi: https://doi.org/10.9770/jssi.2017.7.2(10)
  2. Chia, W. Y., Chew, K. W., Le, C. F., Lam, S. S., Chee, C. S. C., Ooi, M. S. L., Show, P. L. (2020). Sustainable utilization of biowaste compost for renewable energy and soil amendments. Environmental Pollution, 267, 115662. doi: https://doi.org/10.1016/j.envpol.2020.115662
  3. Golub, G., Pavlenko, S., Kukharets, S. (2017). Analytical research into the motion of organic mixture components during formation of compost clamps. Eastern-European Journal of Enterprise Technologies, 3 (1 (87)), 30–35. doi: https://doi.org/10.15587/1729-4061.2017.101097
  4. Geethamani, R., Soundara, B., Kanmani, S., Jayanthi, V., Subaharini, T. R., Sowbiyalakshmi, V., Sowmini, C. (2020). Production of cost affordable organic manure using institutional waste by rapid composting method. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2020.02.803
  5. Kalamdhad, A. S., Pasha, M., Kazmi, A. A. (2008). Stability evaluation of compost by respiration techniques in a rotary drum composter. Resources, Conservation and Recycling, 52 (5), 829–834. doi: https://doi.org/10.1016/j.resconrec.2007.12.003
  6. Liu, Z., Wang, X., Wang, F., Bai, Z., Chadwick, D., Misselbrook, T., Ma, L. (2020). The progress of composting technologies from static heap to intelligent reactor: Benefits and limitations. Journal of Cleaner Production, 270, 122328. doi: https://doi.org/10.1016/j.jclepro.2020.122328
  7. Arora, S., Rani, R., Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269, 16–34. doi: https://doi.org/10.1016/j.jbiotec.2018.01.010
  8. Vechera, O., Tereshchuk, M., Chuba, V., Tsyvenkova, N. (2020). Investigation of aerobic solid fraction fermentation process parameters for organic material. 19th International Scientific Conference Engineering for Rural Development Proceedings, 1450–1455. doi: https://doi.org/10.22616/erdev.2020.19.tf363
  9. Zhi-Qiang, X., Guo-Xing, W., Zhao-Chen, H., Lei, Y., Ya-Mei, G., Yan-Jie, W. et. al. (2017). Effect of Aeration Rates on the Composting Process and Loss of Nitrogen during Composting. Applied Environmental Biotechnology, 2 (1), 1. doi: https://doi.org/10.26789/aeb.2015.01.003
  10. Kauser, H., Pal, S., Haq, I., Khwairakpam, M. (2020). Evaluation of rotary drum composting for the management of invasive weed Mikania micrantha Kunth and its toxicity assessment. Bioresource Technology, 313, 123678. doi: https://doi.org/10.1016/j.biortech.2020.123678
  11. Alkoaik, F., Abdel-Ghany, A., Rashwan, M., Fulleros, R., Ibrahim, M. (2018). Energy Analysis of a Rotary Drum Bioreactor for Composting Tomato Plant Residues. Energies, 11 (2), 449. doi: https://doi.org/10.3390/en11020449
  12. Golub, G., Myhailovych, Y., Achkevych, O., Chuba, V. (2019). Optimization of angular velocity of drum mixers. Eastern-European Journal of Enterprise Technologies, 3 (7 (99)), 64–72. doi: https://doi.org/10.15587/1729-4061.2019.166944
  13. Varma, V. S., Das, S., Sastri, C. V., Kalamdhad, A. S. (2017). Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste. Sustainable Environment Research, 27 (6), 265–272. doi: https://doi.org/10.1016/j.serj.2017.05.004
  14. Jain, M. S., Kalamdhad, A. S. (2019). Drum composting of nitrogen-rich Hydrilla Verticillata with carbon-rich agents: Effects on composting physics and kinetics. Journal of Environmental Management, 231, 770–779. doi: https://doi.org/10.1016/j.jenvman.2018.10.111
  15. Discrete numerical model for granular assemblies (1979). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16 (4), 77. doi: https://doi.org/10.1016/0148-9062(79)91211-7
  16. Rong, W., Li, B., Feng, Y., Schwarz, P., Witt, P., Qi, F. (2020). Numerical analysis of size-induced particle segregation in rotating drums based on Eulerian continuum approach. Powder Technology, 376, 80–92. doi: https://doi.org/10.1016/j.powtec.2020.07.101
  17. Zhang, Z., Gui, N., Ge, L., Li, Z. (2017). Numerical study of mixing of binary-sized particles in rotating tumblers on the effects of end-walls and size ratios. Powder Technology, 314, 164–174. doi: https://doi.org/10.1016/j.powtec.2016.09.072
  18. Ma, H., Zhao, Y. (2018). Investigating the flow of rod-like particles in a horizontal rotating drum using DEM simulation. Granular Matter, 20 (3). doi: https://doi.org/10.1007/s10035-018-0823-0
  19. Verigin, Yu. A. (1989). Termodinamicheskiy analiz protsessa smeseobrazovaniya betonov i drugih dispersnyh sistem. Tez. dokl. Vsesoyuzn. konf. «Fundamental'nye issledovaniya i novye tehnologii v stroitel'nom materialovedenii». Ch. 6. Belgorod: BTISM, 72–73.
  20. Hou, Z., Zhao, Y. (2020). Numerical and experimental study of radial segregation of bi-disperse particles in a quasi-two-dimensional horizontal rotating drum. Particuology, 51, 109–119. doi: https://doi.org/10.1016/j.partic.2019.09.006
  21. Brandao, R. J., Lima, R. M., Santos, R. L., Duarte, C. R., Barrozo, M. A. S. (2020). Experimental study and DEM analysis of granular segregation in a rotating drum. Powder Technology, 364, 1–12. doi: https://doi.org/10.1016/j.powtec.2020.01.036
  22. Li, S., Yao, Q., Chen, B., Zhang, X., Ding, Y. L. (2007). Molecular dynamics simulation and continuum modelling of granular surface flow in rotating drums. Chinese Science Bulletin, 52 (5), 692–700. doi: https://doi.org/10.1007/s11434-007-0069-4
  23. Santos, D. A., Dadalto, F. O., Scatena, R., Duarte, C. R., Barrozo, M. A. S. (2015). A hydrodynamic analysis of a rotating drum operating in the rolling regime. Chemical Engineering Research and Design, 94, 204–212. doi: https://doi.org/10.1016/j.cherd.2014.07.028
  24. Yari, B., Beaulieu, C., Sauriol, P., Bertrand, F., Chaouki, J. (2020). Size segregation of bidisperse granular mixtures in rotating drum. Powder Technology, 374, 172–184. doi: https://doi.org/10.1016/j.powtec.2020.07.030
  25. Liu, Y., Gonzalez, M., Wassgren, C. (2019). Modeling granular material segregation using a combined finite element method and advection–diffusion–segregation equation model. Powder Technology, 346, 38–48. doi: https://doi.org/10.1016/j.powtec.2019.01.086
  26. Chou, S. H., Yang, F. C., Hsiau, S. S. (2019). Influence of interstitial fluid viscosity and particle size on creeping granular flow in a rotating drum. International Journal of Multiphase Flow, 113, 179–190. doi: https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.012
  27. Zhang, L., Jiang, Z., Weigler, F., Herz, F., Mellmann, J., Tsotsas, E. (2020). PTV measurement and DEM simulation of the particle motion in a flighted rotating drum. Powder Technology, 363, 23–37. doi: https://doi.org/10.1016/j.powtec.2019.12.035
  28. GOST 27640-88. Engineering materials and lubricants. Methods of experimental evaluation of friction coefficient. Moscow: Izdatel'stvo standartov na NPU, 22.
  29. Hrabar, I. H., Hrabar, O. I., Hutnichenko, O. A., Kubrak, Yu. O. (2007). Perkoliatsiyno-fraktalni materialy: vlastyvosti, tekhnolohiyi, zastosuvannia. Zhytomyr: ZhDTU, 354.
  30. Popov, V. L. (2013). Mehanika kontaktnogo vzaimodeystviya i fizika treniya. Ot nanotribologii do dinamiki zemletryaseniy. Moscow: Fizmalit, 352.
  31. Vasylkovskyi, O., Leshchenko, S., Vasylkovska, K., Petrenko, D. (2016). Pidruchnyk doslidnyka. Kirovohrad, 204.

Downloads

Published

2020-12-31

How to Cite

Golub, G., Trehub, M., Holubenko, A., Tsyvenkova, N., Chuba, V., & Tereshchuk, M. (2020). Determining of the influence of reactor parameters on the uniformity of mixing substrate components. Eastern-European Journal of Enterprise Technologies, 6(7 (108), 60–70. https://doi.org/10.15587/1729-4061.2020.217159

Issue

Section

Applied mechanics