Analysis of the effects of alloying with Si and Cr on the properties of manganese austenite based on AB INITIO modelling

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217281

Keywords:

high manganese steel, first-principle calculations, Mossbauer spectroscopy, alloying elements, wear-resistant coatings

Abstract

This paper reports a study into estimating the impact of dissolved Si and Cr on the crystalline structure, certain mechanical characteristics, and stability of manganese austenite. The theoretical study was based on the first-principle calculations within a density functional theory (DFT) for austenite structures, which were modeled in the form of 2×2×2 superlattices based on a face-centered cubic lattice.

Atoms in the model superlattices were arranged considering the experimental results from analyzing the Mossbauer spectrum and the X-ray phase analysis of experimental alloys corresponding to high manganese steels. The superlattices that represented the structure of the alloyed austenite contained the C atom in the central octahedral pore, which, relative to the Si(Cr) and Mn atoms, was located in the first and second coordinating spheres, respectively.

The analysis of calculation results reveals that the dissolution of Si and Cr in manganese austenite leads to an increase in the stability of the austenite phase, both according to the results from modeling within the DFT and based on the findings from the thermodynamic analysis. At the same time, the austenite phase is transferred to the region of plastic materials according to the ratio of the volumetric elasticity to shear modules of ≥1.75 (a B/G criterion). Determining the density of electronic states shows that among the structures studied, the lowest number of electrons at the Fermi level, which indicates the highest electrochemical stability, is characterized by manganese austenite alloyed by Cr.

The results of this study provide grounds for expanding the systems of alloying high manganese steels by introducing a significant amount (up to 10 at. %) of Si and Cr, in particular for the application of wear, shock, and corrosion-resistant coatings by the method of electric arc surfacing

Author Biographies

Pavlo Prysyazhnyuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of Welding

Liubomyr Shlapak, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Welding

Iryna Semyanyk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Postgraduate Student

Department of Welding

Volodymyr Kotsyubynsky, State Higher Educational Institution “Vasyl Stefanyk Precarpathian National University” Shevchenkа str., 57, Ivano-Frankivsk, Ukraine, 76018

Doctor of Physical and Mathematical Sciences, Professor

Department of Material Science

Liubomyr Troshchuk, Utility company «Municipal Road Company» Maksimovicha str., 13, Ivano-Frankivsk, Ukraine, 76006

Mechanical Engineer

Sergiy Korniy, Karpenko Physico-Mechanical Institute National Academy of Sciences of Ukraine Naukova str., 5, Lviv, Ukraine, 79060

Doctor of Technical Sciences, Senior Researcher, Head of Department

Corrosion and Corrosion Protection Department

Volodymyr Artym, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Construction and Energy Efficient Buildings

References

  1. Vitos, L., Nilsson, J.-O., Johansson, B. (2006). Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Materialia, 54 (14), 3821–3826. doi: http://doi.org/10.1016/j.actamat.2006.04.013
  2. Ostapovets, A. (2010). Atomistic model of type-II twin boundary. Computational Materials Science, 49 (4), 882–887. doi: http://doi.org/10.1016/j.commatsci.2010.06.041
  3. Mosecker, L., Saeed-Akbari, A. (2013). Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics. Science and Technology of Advanced Materials, 14 (3), 033001. doi: http://doi.org/10.1088/1468-6996/14/3/033001
  4. Tatsiy, R. M., Pazen, O. Y., Vovk, S. Y., Ropyak, L. Y., Pryhorovska, T. O. (2019). Numerical study on heat transfer in multilayered structures of main geometric forms made of different materials. Journal of the Serbian Society for Computational Mechanics, 13 (2), 36–55. doi: http://doi.org/10.24874/jsscm.2019.13.02.04
  5. Volchenko, N., Volchenko, A., Volchenko, D., Poliakov, P., Malyk, V., Zhuravliov, D. et. al. (2019). Features of the estimation of the intensity of heat exchange in self-ventilated disk-shoe brakes of vehicles. Eastern-European Journal of Enterprise Technologies, 1 (5 (97)), 47–53. doi: http://doi.org/10.15587/1729-4061.2019.154712
  6. Ropyak, L., Ostapovych, V. (2016). Optimization of process parameters of chrome plating for providing quality indicators of reciprocating pumps parts. Eastern-European Journal of Enterprise Technologies, 2 (5 (80)), 50–62. doi: http://doi.org/10.15587/1729-4061.2016.65719
  7. Drábiková, J., Pastorek, F., Fintová, S., Doležal, P., Wasserbauer, J. (2016). Improvement of bio-compatible AZ61 magnesium alloy corrosion resistance by fluoride conversion coating. Koroze a Ochrana Materialu, 60 (5), 132–138. doi: http://doi.org/10.1515/kom-2016-0021
  8. Saakiyan, L. S., Efremov, A. P., Ropyak, L. Ya. (1989). Effect of stress on the microelectrochemical heterogeneity of steel. Protection of Metals, 25 (2), 185–189.
  9. Kresse, G., Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6 (1), 15–50. doi: http://doi.org/10.1016/0927-0256(96)00008-0
  10. Hafner, J., Kresse, G. (1997). The Vienna AB-Initio Simulation Program VASP: An Efficient and Versatile Tool for Studying the Structural, Dynamic, and Electronic Properties of Materials. Properties of Complex Inorganic Solids, 69–82. doi: http://doi.org/10.1007/978-1-4615-5943-6_10
  11. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Für Kristallographie – Crystalline Materials, 220 (5/6). 567–570. doi: http://doi.org/10.1524/zkri.220.5.567.65075
  12. Duryagina, Z. A., Bespalov, S. A., Borysyuk, A. K., Pidkova, V. Ya. (2011). Magnetometric analysis of surface layers of 12X18H10T steel after ion-beam nitriding. Metallofizika i noveishie tekhnologii, 33 (5), 615–622.
  13. Tatarenko, V. A., Radchenko, T. M., Nadutov, V. M. (2003). Parameters of interatomic interaction in a substitutional alloy F.C.C. Ni-Fe according to experimental data about the magnetic characteristics and equilibrium values of intensity of a diffuse scattering of radiations. Metallofizika i noveishie tekhnologii, 25 (10), 1303–1319.
  14. Dong, N., Jia, R., Wang, J., Fan, G., Fang, X., Han, P. (2019). Composition Optimum Design and Strengthening and Toughening Mechanisms of New Alumina-Forming Austenitic Heat-Resistant Steels. Metals, 9 (9), 921. doi: http://doi.org/10.3390/met9090921
  15. Zhou, Y., Li, Y., Wang, W., Qian, L., Xiao, S., Lv, Z. (2018). Effect of interstitial nitrogen in Fe18Cr6Mn8 austenitic alloys from density functional theory. Journal of Magnetism and Magnetic Materials, 463, 57–63. doi: http://doi.org/10.1016/j.jmmm.2018.05.034
  16. Oila, A., Bull, S. J. (2009). Atomistic simulation of Fe–C austenite. Computational Materials Science, 45 (2), 235–239. doi: http://doi.org/10.1016/j.commatsci.2008.09.013
  17. Lv, Z. Q., Wang, B., Sun, S. H., Fu, W. T. (2015). Effect of atomic sites on electronic and mechanical properties of (Fe,Mo)6C carbides. Journal of Alloys and Compounds, 649, 1089–1093. doi: http://doi.org/10.1016/j.jallcom.2015.06.249
  18. Sevsek, S., Bleck, W. (2018). Ab Initio-Based Modelling of the Yield Strength in High-Manganese Steels. Metals, 8 (1), 34. doi: http://doi.org/10.3390/met8010034
  19. Lv, Z. Q., Shi, Z. P., Li, Y. (2012). First-Principles Study on the Structural, Electronic and Elastic Properties of Alloyed Austenite with Co and Ni. Advanced Materials Research, 503-504, 684–687. doi: http://doi.org/10.4028/www.scientific.net/amr.503-504.684
  20. Reeh, S., Music, D., Gebhardt, T., Kasprzak, M., Jäpel, T., Zaefferer, S. et. al. (2012). Elastic properties of face-centred cubic Fe–Mn–C studied by nanoindentation and ab initio calculations. Acta Materialia, 60 (17), 6025–6032. doi: http://doi.org/10.1016/j.actamat.2012.07.038
  21. Guo, T., Siska, F., Cheng, J., Barnett, M. (2018). Initiation of basal slip and tensile twinning in magnesium alloys during nanoindentation. Journal of Alloys and Compounds, 731, 620–630. doi: http://doi.org/10.1016/j.jallcom.2017.10.088
  22. Perdew, J. P., Burke, K., Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple. Physical Review Letters, 78 (7), 1396–1405. doi: http://doi.org/10.1103/physrevlett.78.1396
  23. Monkhorst, H. J., Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13 (12), 5188–5192. doi: http://doi.org/10.1103/physrevb.13.5188
  24. Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41 (11), 7892–7895. doi: http://doi.org/10.1103/physrevb.41.7892
  25. Sundman, B., Kattner, U. R., Palumbo, M., Fries, S. G. (2015). OpenCalphad - a free thermodynamic software. Integrating Materials and Manufacturing Innovation, 4 (1), 1–15. doi: http://doi.org/10.1186/s40192-014-0029-1
  26. Hallstedt, B., Khvan, A. V., Lindahl, B. B., Selleby, M., Liu, S. (2017). PrecHiMn-4 – A thermodynamic database for high-Mn steels. Calphad, 56, 49–57. doi: http://doi.org/10.1016/j.calphad.2016.11.006
  27. Shihab, T., Prysyazhnyuk, P., Semyanyk, I., Anrusyshyn, R., Ivanov, O., Troshchuk, L. (2020). Thermodynamic Approach to the Development and Selection of Hardfacing Materials in Energy Industry. Management Systems in Production Engineering, 28 (2), 84–89. doi: http://doi.org/10.2478/mspe-2020-0013
  28. Prysyazhnyuk, P., Lutsak, D., Vasylyk, A., Shihab, T., Burda, M. (2015). Calculation of surface tension and its temperature dependence for liquid Cu-20Ni-20Mn alloy. Management Systems in Production Engineering, 12, 346–350.
  29. Kryl’, Y. A., Prysyazhnyuk, P. M. (2013). Structure formation and properties of NbC-Hadfield steel cermets. Journal of Superhard Materials, 35 (5), 292–297. doi: http://doi.org/10.3103/s1063457613050043
  30. Sabzi, M., Dezfuli, S. M. (2018). Post weld heat treatment of hypereutectoid hadfield steel: Characterization and control of microstructure, phase equilibrium, mechanical properties and fracture mode of welding joint. Journal of Manufacturing Processes, 34, 313–328. doi: http://doi.org/10.1016/j.jmapro.2018.06.009
  31. Timoshevskii, A. M., Yablonovskii, S. O., Yeremin, V. I. (2011). Computer Simulation of Atomic Structure and Hyperfine Interactions in Fe–C Austenite. Uspehi Fiziki Metallov, 12 (4), 451–470. doi: http://doi.org/10.15407/ufm.12.04.451
  32. Guo, G. Y., Yablonovskii, S. O., Wang, H. H. (2000). Gradient-corrected density functional calculation of elastic constants of Fe, Co and Ni in bcc, fcc and hcp structures. Chinese Journal of Physics, 38 (5), 949–961.
  33. Seki, I., Nagata, K. (2005). Lattice Constant of Iron and Austenite Including Its Supersaturation Phase of Carbon. ISIJ International, 45 (12), 1789–1794. doi: http://doi.org/10.2355/isijinternational.45.1789
  34. Sahalianov, I. Y., Radchenko, T. M., Tatarenko, V. A., Cuniberti, G., Prylutskyy, Y. I. (2019). Straintronics in graphene: Extra large electronic band gap induced by tensile and shear strains. Journal of Applied Physics, 126 (5), 054302. doi: http://doi.org/10.1063/1.5095600
  35. Wu, Z., Zhao, E., Xiang, H., Hao, X., Liu, X., Meng, J. (2007). Crystal structures and elastic properties of superhardIrN2andIrN3from first principles. Physical Review B, 76 (5). doi: http://doi.org/10.1103/physrevb.76.054115
  36. Lyakhov, A. O., Oganov, A. R. (2011). Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2. Physical Review B, 84 (9). doi: http://doi.org/10.1103/physrevb.84.092103

Downloads

Published

2020-12-31

How to Cite

Prysyazhnyuk, P., Shlapak, L., Semyanyk, I., Kotsyubynsky, V., Troshchuk, L., Korniy, S., & Artym, V. (2020). Analysis of the effects of alloying with Si and Cr on the properties of manganese austenite based on AB INITIO modelling. Eastern-European Journal of Enterprise Technologies, 6(12 (108), 28–36. https://doi.org/10.15587/1729-4061.2020.217281

Issue

Section

Materials Science