An analysis of coil dimensions on induction heating machine against microstructure and hardness distribution as new candidate of projectile-resistant steel plates materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217297

Keywords:

heating coil, induction heating machine, surface hardening, hardness distribution, ballistic material

Abstract

The field of defense and security requires ballistic resistant materials for self-protection. Ballistic resistant materials must be able to withstand projectile spin rate and absorb impact energy. A combination of hardness on the surface and ductility on the other side is required to make the projectile resistance plate. Hardness is required to withstand the projectile rate, while ductility is required to reduce cracking, brittle fracture and absorption of impact energy. The objective of this study is to find the effect of the coil shape on microstructure and hardness distribution on the steel plate that is carried out by surface hardening using an induction machine. Medium carbon steel plate with the thickness 8 mm is austenitized using the induction heating machine with coil dimension and shape variations. Austenizing on the surface and rapid quenching in oil media are up to 900 °C. A micro-observation was conducted on quench plates and hardness distribution on their cross-section. The result of microstructure observation and micro Vickers hardness test of coil variation at a diameter 5 mm and with the number of turns of 2 and 3 is microstructures on all sides formed with martensite structure and equal hardness on the entire cross-section, so that no surface hardening formed. Micro-observations showed martensite structure on the surface side and the ferrite and perlite structures are still visible on the middle and lower sides using 8 mm diameter coils and 2 turns. The maximum hardness is 497 HVN on the upper side surface and 257 HVN on the lower side surface using an 8 mm diameter coil and 2 turns. An increased hardness on one of the plate surfaces while maintaining the ductile on the opposite side can be proposed as a candidate for a ballistic-resistant plate through further research

Author Biographies

Helmy Purwanto, Universitas Wahid Hasyim Jl. Menoreh Tengah X/22, Sampangan, Semarang, Indonesia, 50236

Doctor of Mechanical Engineering

Department of Mechanical Engineering

Mohammad Tauviqirrahman, Universitas Diponegoro Jl. Prof. H. Soedharto, Tembalang, Semarang, Indonesia, 50275

Doctor of Mechanical Engineering

Department of Mechanical Engineering

Muhammad Dzulfikar, Universitas Wahid Hasyim Jl. Menoreh Tengah X/22, Sampangan, Semarang, Indonesia, 50236

Master of Mechanical Engineering

Department of Mechanical Engineering

Rifky Ismail, Universitas Diponegoro Jl. Prof. H. Soedharto, Tembalang, Semarang, Indonesia, 50275

Doctor of Mechanical Engineering

Department of Mechanical Engineering

Purnomo Purnomo, Universitas Muhammadiyah Semarang Jl. Kedungmundu Raya No. 18, Semarang, Indonesia, 50273

Doctor of Mechanical Engineering

Department of Mechanical Engineering

Ahnas Syifauddin, Universitas Wahid Hasyim Jl. Menoreh Tengah X/22, Sampangan, Semarang, Indonesia, 50236

Bachelor of Mechanical Engineering

Department of Mechanical Engineering

References

  1. Jena, P. K., Mishra, B., RameshBabu, M., Babu, A., Singh, A. K., SivaKumar, K., Bhat, T. B. (2010). Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel. International Journal of Impact Engineering, 37 (3), 242–249. doi: https://doi.org/10.1016/j.ijimpeng.2009.09.003
  2. Purwanto, H., Soenoko, R., Purnowidodo, A., Suprapto, A. (2018). Energy absorbers on the steel plate – rubber laminate after deformable projectile impact. Eastern-European Journal of Enterprise Technologies, 4 (7 (94)), 6–12. doi: https://doi.org/10.15587/1729-4061.2018.127345
  3. Purwanto, H., Soenoko, R., Purnowidodo, A., Suprapto, A. (2020). The Influence of Single and Double Steel Plate Hardness on Fracture Behavior after Ballistic Impact. Periodica Polytechnica Mechanical Engineering, 64 (3), 189–198. doi: https://doi.org/10.3311/ppme.11780
  4. Dey, S., Børvik, T., Teng, X., Wierzbicki, T., Hopperstad, O. S. (2007). On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures, 44 (20), 6701–6723. doi: https://doi.org/10.1016/j.ijsolstr.2007.03.005
  5. Senthil, K., Iqbal, M. A. (2020). Prediction of superior target layer configuration of armour steel, mild steel and aluminium 7075-T651 alloy against 7.62 AP projectile. Structures. doi: https://doi.org/10.1016/j.istruc.2020.06.010
  6. Purwanto, H., Dzulfikar, M., Tauviqirrahman, M., Ismail, R., Lestari, N. (2019). The Effect of Tempering Temperature on Medium Carbon Steel Plate of Surface Hardening Result Using Induction Heating as Ballistic Resistant Material Study. IOP Conference Series: Materials Science and Engineering, 694, 012041. doi: https://doi.org/10.1088/1757-899x/694/1/012041
  7. Jo, M. C., Kim, S., Suh, D. W., Hong, S. S., Kim, H. K., Sohn, S. S., Lee, S. (2020). Effect of tempering conditions on adiabatic shear banding during dynamic compression and ballistic impact tests of ultra-high-strength armor steel. Materials Science and Engineering: A, 792, 139818. doi: https://doi.org/10.1016/j.msea.2020.139818
  8. Jena, P. K., Senthil P., P., K., S. K. (2016). Effect of tempering time on the ballistic performance of a high strength armour steel. Journal of Applied Research and Technology, 14 (1), 47–53. doi: https://doi.org/10.1016/j.jart.2016.02.002
  9. Zhang, P., Wang, Z., Zhao, P., Zhang, L., Jin, X. C., Xu, Y. (2019). Experimental investigation on ballistic resistance of polyurea coated steel plates subjected to fragment impact. Thin-Walled Structures, 144, 106342. doi: https://doi.org/10.1016/j.tws.2019.106342
  10. Liu, Q.-Q., Wang, S.-P., Lin, X., Cui, P., Zhang, S. (2020). Numerical simulation on the anti-penetration performance of polyurea-core Weldox 460 E steel sandwich plates. Composite Structures, 236, 111852. doi: https://doi.org/10.1016/j.compstruct.2019.111852
  11. Jena, P. K., Ramanjeneyulu, K., Siva Kumar, K., Balakrishna Bhat, T. (2009). Ballistic studies on layered structures. Materials & Design, 30 (6), 1922–1929. doi: https://doi.org/10.1016/j.matdes.2008.09.008
  12. Rahman, N., Abdullah, S., Abdullah, M., Zamri, W., Omar, M., Sajuri, Z. (2018). Experimental and Numerical Investigation on the Layering Configuration Effect to the Laminated Aluminium/Steel Panel Subjected to High Speed Impact Test. Metals, 8 (9), 732. doi: https://doi.org/10.3390/met8090732
  13. Yurianto, Y., Pratikto, P., Soenoko, R., Suprapto, W. (2019). Effect of quench and temper on hardness and wear of HRP steel (armor steel candidate). Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 55–61. doi: https://doi.org/10.15587/1729-4061.2019.156799
  14. Mishra, B., Jena, P. K., Ramakrishna, B., Madhu, V., Bhat, T. B., Gupta, N. K. (2012). Effect of tempering temperature, plate thickness and presence of holes on ballistic impact behavior and ASB formation of a high strength steel. International Journal of Impact Engineering, 44, 17–28. doi: https://doi.org/10.1016/j.ijimpeng.2011.12.004
  15. Lou, D. C., Solberg, J. K., Børvik, T. (2009). Surface strengthening using a self-protective diffusion paste and its application for ballistic protection of steel plates. Materials & Design, 30 (9), 3525–3536. doi: https://doi.org/10.1016/j.matdes.2009.03.003
  16. Holmen, J. K., Solberg, J. K., Hopperstad, O. S., Børvik, T. (2017). Ballistic impact of layered and case-hardened steel plates. International Journal of Impact Engineering, 110, 4–14. doi: https://doi.org/10.1016/j.ijimpeng.2017.02.001
  17. Lope, I., Acero, J., Carretero, C. (2016). Analysis and Optimization of the Efficiency of Induction Heating Applications With Litz-Wire Planar and Solenoidal Coils. IEEE Transactions on Power Electronics, 31 (7), 5089–5101. doi: https://doi.org/10.1109/tpel.2015.2478075
  18. Huang, M.-S., Huang, Y.-L. (2010). Effect of multi-layered induction coils on efficiency and uniformity of surface heating. International Journal of Heat and Mass Transfer, 53 (11-12), 2414–2423. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.042
  19. Nian, S.-C., Tsai, S.-W., Huang, M.-S., Huang, R.-C., Chen, C.-H. (2014). Key parameters and optimal design of a single-layered induction coil for external rapid mold surface heating. International Communications in Heat and Mass Transfer, 57, 109–117. doi: https://doi.org/10.1016/j.icheatmasstransfer.2014.07.019
  20. Dikshit, S. N., Kutumbarao, V. V., Sundararajan, G. (1995). The influence of plate hardness on the ballistic penetration of thick steel plates. International Journal of Impact Engineering, 16 (2), 293–320. doi: https://doi.org/10.1016/0734-743x(94)00041-t
  21. Ismail, R., Aldiyaz, F., Bakar, M. A., Nugroho, S. (2018). Pengaruh Frekuensi Arus Induksi Terhadap Distribusi Kekerasan Pada Teknik Pengerasan Quenching Permukaan Menggunakan Teknik Induksi Statis Pada Camshaft Mesin Diesel 2 Silinder. Simposium Nasional RAPI XVII, 141–147. Available at: http://hdl.handle.net/11617/10639
  22. Rudnev, V., Loveless, D., Cook, R., Black, M. (2003). Handbook of Induction Heating. Marcell Dekker Inc.
  23. Kelly, P. M., Nutting, J. (1960). The martensite transformation in carbon steels. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 259 (1296), 45–58. doi: https://doi.org/10.1098/rspa.1960.0210

Downloads

Published

2020-12-31

How to Cite

Purwanto, H., Tauviqirrahman, M., Dzulfikar, M., Ismail, R., Purnomo, P., & Syifauddin, A. (2020). An analysis of coil dimensions on induction heating machine against microstructure and hardness distribution as new candidate of projectile-resistant steel plates materials. Eastern-European Journal of Enterprise Technologies, 6(12 (108), 37–44. https://doi.org/10.15587/1729-4061.2020.217297

Issue

Section

Materials Science