An analysis of coil dimensions on induction heating machine against microstructure and hardness distribution as new candidate of projectile-resistant steel plates materials
DOI:
https://doi.org/10.15587/1729-4061.2020.217297Keywords:
heating coil, induction heating machine, surface hardening, hardness distribution, ballistic materialAbstract
The field of defense and security requires ballistic resistant materials for self-protection. Ballistic resistant materials must be able to withstand projectile spin rate and absorb impact energy. A combination of hardness on the surface and ductility on the other side is required to make the projectile resistance plate. Hardness is required to withstand the projectile rate, while ductility is required to reduce cracking, brittle fracture and absorption of impact energy. The objective of this study is to find the effect of the coil shape on microstructure and hardness distribution on the steel plate that is carried out by surface hardening using an induction machine. Medium carbon steel plate with the thickness 8 mm is austenitized using the induction heating machine with coil dimension and shape variations. Austenizing on the surface and rapid quenching in oil media are up to 900 °C. A micro-observation was conducted on quench plates and hardness distribution on their cross-section. The result of microstructure observation and micro Vickers hardness test of coil variation at a diameter 5 mm and with the number of turns of 2 and 3 is microstructures on all sides formed with martensite structure and equal hardness on the entire cross-section, so that no surface hardening formed. Micro-observations showed martensite structure on the surface side and the ferrite and perlite structures are still visible on the middle and lower sides using 8 mm diameter coils and 2 turns. The maximum hardness is 497 HVN on the upper side surface and 257 HVN on the lower side surface using an 8 mm diameter coil and 2 turns. An increased hardness on one of the plate surfaces while maintaining the ductile on the opposite side can be proposed as a candidate for a ballistic-resistant plate through further researchReferences
- Jena, P. K., Mishra, B., RameshBabu, M., Babu, A., Singh, A. K., SivaKumar, K., Bhat, T. B. (2010). Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel. International Journal of Impact Engineering, 37 (3), 242–249. doi: https://doi.org/10.1016/j.ijimpeng.2009.09.003
- Purwanto, H., Soenoko, R., Purnowidodo, A., Suprapto, A. (2018). Energy absorbers on the steel plate – rubber laminate after deformable projectile impact. Eastern-European Journal of Enterprise Technologies, 4 (7 (94)), 6–12. doi: https://doi.org/10.15587/1729-4061.2018.127345
- Purwanto, H., Soenoko, R., Purnowidodo, A., Suprapto, A. (2020). The Influence of Single and Double Steel Plate Hardness on Fracture Behavior after Ballistic Impact. Periodica Polytechnica Mechanical Engineering, 64 (3), 189–198. doi: https://doi.org/10.3311/ppme.11780
- Dey, S., Børvik, T., Teng, X., Wierzbicki, T., Hopperstad, O. S. (2007). On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures, 44 (20), 6701–6723. doi: https://doi.org/10.1016/j.ijsolstr.2007.03.005
- Senthil, K., Iqbal, M. A. (2020). Prediction of superior target layer configuration of armour steel, mild steel and aluminium 7075-T651 alloy against 7.62 AP projectile. Structures. doi: https://doi.org/10.1016/j.istruc.2020.06.010
- Purwanto, H., Dzulfikar, M., Tauviqirrahman, M., Ismail, R., Lestari, N. (2019). The Effect of Tempering Temperature on Medium Carbon Steel Plate of Surface Hardening Result Using Induction Heating as Ballistic Resistant Material Study. IOP Conference Series: Materials Science and Engineering, 694, 012041. doi: https://doi.org/10.1088/1757-899x/694/1/012041
- Jo, M. C., Kim, S., Suh, D. W., Hong, S. S., Kim, H. K., Sohn, S. S., Lee, S. (2020). Effect of tempering conditions on adiabatic shear banding during dynamic compression and ballistic impact tests of ultra-high-strength armor steel. Materials Science and Engineering: A, 792, 139818. doi: https://doi.org/10.1016/j.msea.2020.139818
- Jena, P. K., Senthil P., P., K., S. K. (2016). Effect of tempering time on the ballistic performance of a high strength armour steel. Journal of Applied Research and Technology, 14 (1), 47–53. doi: https://doi.org/10.1016/j.jart.2016.02.002
- Zhang, P., Wang, Z., Zhao, P., Zhang, L., Jin, X. C., Xu, Y. (2019). Experimental investigation on ballistic resistance of polyurea coated steel plates subjected to fragment impact. Thin-Walled Structures, 144, 106342. doi: https://doi.org/10.1016/j.tws.2019.106342
- Liu, Q.-Q., Wang, S.-P., Lin, X., Cui, P., Zhang, S. (2020). Numerical simulation on the anti-penetration performance of polyurea-core Weldox 460 E steel sandwich plates. Composite Structures, 236, 111852. doi: https://doi.org/10.1016/j.compstruct.2019.111852
- Jena, P. K., Ramanjeneyulu, K., Siva Kumar, K., Balakrishna Bhat, T. (2009). Ballistic studies on layered structures. Materials & Design, 30 (6), 1922–1929. doi: https://doi.org/10.1016/j.matdes.2008.09.008
- Rahman, N., Abdullah, S., Abdullah, M., Zamri, W., Omar, M., Sajuri, Z. (2018). Experimental and Numerical Investigation on the Layering Configuration Effect to the Laminated Aluminium/Steel Panel Subjected to High Speed Impact Test. Metals, 8 (9), 732. doi: https://doi.org/10.3390/met8090732
- Yurianto, Y., Pratikto, P., Soenoko, R., Suprapto, W. (2019). Effect of quench and temper on hardness and wear of HRP steel (armor steel candidate). Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 55–61. doi: https://doi.org/10.15587/1729-4061.2019.156799
- Mishra, B., Jena, P. K., Ramakrishna, B., Madhu, V., Bhat, T. B., Gupta, N. K. (2012). Effect of tempering temperature, plate thickness and presence of holes on ballistic impact behavior and ASB formation of a high strength steel. International Journal of Impact Engineering, 44, 17–28. doi: https://doi.org/10.1016/j.ijimpeng.2011.12.004
- Lou, D. C., Solberg, J. K., Børvik, T. (2009). Surface strengthening using a self-protective diffusion paste and its application for ballistic protection of steel plates. Materials & Design, 30 (9), 3525–3536. doi: https://doi.org/10.1016/j.matdes.2009.03.003
- Holmen, J. K., Solberg, J. K., Hopperstad, O. S., Børvik, T. (2017). Ballistic impact of layered and case-hardened steel plates. International Journal of Impact Engineering, 110, 4–14. doi: https://doi.org/10.1016/j.ijimpeng.2017.02.001
- Lope, I., Acero, J., Carretero, C. (2016). Analysis and Optimization of the Efficiency of Induction Heating Applications With Litz-Wire Planar and Solenoidal Coils. IEEE Transactions on Power Electronics, 31 (7), 5089–5101. doi: https://doi.org/10.1109/tpel.2015.2478075
- Huang, M.-S., Huang, Y.-L. (2010). Effect of multi-layered induction coils on efficiency and uniformity of surface heating. International Journal of Heat and Mass Transfer, 53 (11-12), 2414–2423. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.042
- Nian, S.-C., Tsai, S.-W., Huang, M.-S., Huang, R.-C., Chen, C.-H. (2014). Key parameters and optimal design of a single-layered induction coil for external rapid mold surface heating. International Communications in Heat and Mass Transfer, 57, 109–117. doi: https://doi.org/10.1016/j.icheatmasstransfer.2014.07.019
- Dikshit, S. N., Kutumbarao, V. V., Sundararajan, G. (1995). The influence of plate hardness on the ballistic penetration of thick steel plates. International Journal of Impact Engineering, 16 (2), 293–320. doi: https://doi.org/10.1016/0734-743x(94)00041-t
- Ismail, R., Aldiyaz, F., Bakar, M. A., Nugroho, S. (2018). Pengaruh Frekuensi Arus Induksi Terhadap Distribusi Kekerasan Pada Teknik Pengerasan Quenching Permukaan Menggunakan Teknik Induksi Statis Pada Camshaft Mesin Diesel 2 Silinder. Simposium Nasional RAPI XVII, 141–147. Available at: http://hdl.handle.net/11617/10639
- Rudnev, V., Loveless, D., Cook, R., Black, M. (2003). Handbook of Induction Heating. Marcell Dekker Inc.
- Kelly, P. M., Nutting, J. (1960). The martensite transformation in carbon steels. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 259 (1296), 45–58. doi: https://doi.org/10.1098/rspa.1960.0210
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Helmy Purwanto, Mohammad Tauviqirrahman, Muhammad Dzulfikar, Rifky Ismail, Purnomo Purnomo, Ahnas Syifauddin
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.