Investigation of the anodic behavior of w-based superalloy for electrochemical selective treatment
DOI:
https://doi.org/10.15587/1729-4061.2020.218355Keywords:
superalloy, passivation, anodic behavior, tungsten, nickel, iron, selective anodic dissolutionAbstract
W-based superalloys are widely used as elements of drilling equipment, high-speed steel cutting tools, or penetrators for armor-piercing munitions. Used or broken superalloy products are valuable waste that can be recycled to recover valuable components. The most economically and technologically viable method for recycling superalloy scrap is a selective treatment with the dissolution of the binder metal and the production of non-oxidized tungsten powder. The aim of this work was to determine the possibility of anodic treatment of the VNZh90 superalloy scrap with the selective dissolution of the binder metal. The anodic behavior of the VNZh90 superalloy (5 % Ni, 5 % Fe, 90 % W) in HCl solutions with a concentration (wt %) of 9, 13, 17, and 30 was studied by voltammetry. It was shown that the anodic polarization curves of the alloy contained two dissolution peaks on a fresh surface (Fe and Ni components of the binder metal) with a further decrease in the current density. The effect of significant passivation of the VNZh90 alloy was revealed: repeated polarization curves in a 9 % HCL solution contained only the Ni dissolution peak with a 6-fold reduced current density. The passivation of the VNZh90 alloy was explained by the depletion of the surface due to the dissolution of the active Fe component and the Ni passivation due to the W dissolution during the formation of a superalloy. An increase in the HCl concentration did not reveal an activating effect. It was found that there was no activation effect when FeCl3 was added to the electrolyte. The introduction of NaCl showed a high activation effect, and the dissolution current density of the passivated Ni component increased by 1.69 times. The efficiency of selective dissolution of the binder metal of the highly passive VNZh90 alloy must be confirmed by the galvanostatic or volt-static methodReferences
- Ciesla, M., Manka, M., Gradon, P., Binczyk, F. (2014). Impact of a Structure on Durability of Modified Nickel-Base Superalloys in Creep Conditions/ Wpływ Struktury Na Trwałość W Warunkach Pełzania Modyfikowanych Nadstopów Na Bazie Niklu. Archives of Metallurgy and Materials, 59 (4), 1559–1563. doi: https://doi.org/10.2478/amm-2014-0264
- Masoumi, F., Shahriari, D., Jahazi, M., Cormier, J., Devaux, A. (2016). Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy. Scientific Reports, 6 (1). doi: https://doi.org/10.1038/srep28650
- Lin, Y. C., Li, L., He, D.-G., Chen, M.-S., Liu, G.-Q. (2017). Effects of pre-treatments on mechanical properties and fracture mechanism of a nickel-based superalloy. Materials Science and Engineering: A, 679, 401–409. doi: https://doi.org/10.1016/j.msea.2016.10.058
- Faga, M. G., Mattioda, R., Settineri, L. (2010). Microstructural and mechanical characteristics of recycled hard metals for cutting tools. CIRP Annals, 59 (1), 133–136. doi: https://doi.org/10.1016/j.cirp.2010.03.052
- Lee, J., Kim, E., Kim, J.-H., Kim, W., Kim, B.-S., Pandey, B. D. (2011). Recycling of WC–Co hardmetal sludge by a new hydrometallurgical route. International Journal of Refractory Metals and Hard Materials, 29 (3), 365–371. doi: https://doi.org/10.1016/j.ijrmhm.2011.01.003
- Gaona-Tiburcio, C., Aguilar, L. M. R., Zambrano, R. P., Estupiñán, L. F., Cabral, M. J. A., Nieves-Mendoza, D., Castillo-González, E., Almeraya-Calderón, F. (2014). Electrochemical Noise Analysis of Nickel Based Superalloys in Acid Solutions. International Journal of Electrochemical Science, 9, 523–533.
- Srivastava, R. R., Kim, M., Lee, J., Jha, M. K., Kim, B.-S. (2014). Resource recycling of superalloys and hydrometallurgical challenges. Journal of Materials Science, 49 (14), 4671–4686. doi: https://doi.org/10.1007/s10853-014-8219-y
- Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
- Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of NiAl hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
- Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
- Jović, V. D., Jović, B. M., Pavlović, M. G. (2006). Electrodeposition of Ni, Co and Ni–Co alloy powders. Electrochimica Acta, 51 (25), 5468–5477. doi: https://doi.org/10.1016/j.electacta.2006.02.022
- Kuznetsova, O. G., Levin, A. M., Sevostyanov, M. A., Bolshih, A. O. (2019). Electrochemical recycling of nickel-cobalt-containing tungsten alloys. IOP Conference Series: Materials Science and Engineering, 525, 012088. doi: https://doi.org/10.1088/1757-899x/525/1/012088
- Kovalenko, V., Kotok, V., Vlasov, S. (2018). Definition of synthesis parameters of ultrafine nickel powder by direct electrolysis for application in superalloy production. Eastern-European Journal of Enterprise Technologies, 1 (6 (91)), 27–33. doi: https://doi.org/10.15587/1729-4061.2018.121595
- Kovalenko, V., Kotok, V., Vlasov, S. (2018). Development of the electrochemical synthesis method of ultrafine cobalt powder for a superalloy production. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 41–47. doi: https://doi.org/10.15587/1729-4061.2018.126928
- Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
- Vlasova, E., Кovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
- Xing, W., Fan, X., Dong, H., Wu, Y., Fu, G., Liu, Y. (2013). Regeneration technology and progress of waste superalloy. Chinese Journal of Rare Metals, 37 (3), 494–500. doi: http://doi.org/10.3969/j.issn.0258-7076.2013.03.025
- Srivastava, R. R., Kim, M., Lee, J. (2016). Novel Aqueous Processing of the Reverted Turbine-Blade Superalloy for Rhenium Recovery. Industrial & Engineering Chemistry Research, 55 (29), 8191–8199. doi: https://doi.org/10.1021/acs.iecr.6b00778
- Yagi, R., Okabe, T. H. (2016). Recovery of Nickel from Nickel-Based Superalloy Scraps by Utilizing Molten Zinc. Metallurgical and Materials Transactions B, 48 (1), 335–345. doi: https://doi.org/10.1007/s11663-016-0854-z
- Wu, J., Su, T., Liu, G., Luo, M. (2016). Controlled potential for selectively dissolving nickel-based superalloy wastes containing rhenium element. Xiyou Jinshu/Chinese Journal of Rare Metals. doi: http://doi.org/10.13373/j.cnki.cjrm.2016.07.016
- Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
- Kuznetsova, O. G., Levin, A. M., Sevast’yanov, M. A., Tsybin, O. I., Bol’shikh, A. O. (2019). Electrochemical Oxidation of a Heavy Tungsten-Containing VNZh-Type Alloy and Its Components in Ammonia–Alkali Electrolytes. Russian Metallurgy (Metally), 2019 (5), 507–510. doi: https://doi.org/10.1134/s0036029519050057
- Kuznetsova, O. G., Levin, A. M., Sevostyanov, M. A., Tsybin, O. I., Bolshikh, A. O. (2020). Changes in electrochemical properties of a heavy tungsten alloy during its processing under the influence of DC current in ammonia-alkali solutions. IOP Conference Series: Materials Science and Engineering, 848, 012045. doi: https://doi.org/10.1088/1757-899x/848/1/012045
- Kuznetsova, O. G., Levin, A. M., Sevostyanov, M. A., Tsybin, O. I., Bolshikh, A. O. (2020). AC electrochemical oxidation of nickel and VNZh alloy in alkaline-ammonium solutions. IOP Conference Series: Materials Science and Engineering, 848, 012046. doi: https://doi.org/10.1088/1757-899x/848/1/012046
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Vadym Kovalenko, Valerii Kotok
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.