Analytical system for 3,4-benzopyrene detection based on nanophotonic sensor

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.22408

Keywords:

3, 4-benzopyrene, analytical system, quantum dots, quantum-chemical calculations, nanophotonic sensor

Abstract

Anthropogenic pollution of environmental water is a huge problem for humanity today as it leads to an increase of incurable diseases. For example, the penetration into the organism of organic carcinogens such as polycyclic aromatic hydrocarbons (PAHs) can lead to the development of cancer tumors. The most dangerous among PAHs is 3,4-benzopyrene (BP). Therefore, the article is devoted to the development of nanophotonic sensor device construction and analytical system based on this device working on the flow injection analysis principle for the PAH in particular BP detection in environment water. Detector elements of nanophotonic sensor device are spherical quantum dots (QDs) fixed on the working electrode. Optimal choice of QDs energy parameters and its diameters were obtained using quantum-chemical calculation. Those data allowed us to prove probability of energy-transfer reactions between charged forms of QD’s and BP and to obtain sensor with low detection limit and high selectivity of BP definition. Due to the fixed quantum dots monolayer on the working electrode using Langmuir-Blodgett technology nanophotonic sensor possesses reproducibility and can operate as multiple use device. The nanophotonic sensor can be used in the framework of the developed analytical system or independently as an integral part of similar systems. As a result of this work electrochemical and spectroscopic studies of BP in water samples were carried out. A number of model water samples with known BP concentrations were investigated and statistical processing of this results calibration graph for BP detection using nanophotonic sensor was accomplished and treated by regression analysis.

Author Biography

Ольга Анатоліївна Сушко, Kharkiv National University of Radio Electronics 14, Lenin ave., Kharkiv, Ukraine, 61166

PhD student

Department of Biomedical Engineering

References

  1. Болотина, Н. А. Опухоль-промоторный эффект полициклических ароматических углеводородов [Текст] : автореф. дис. канд. мед. наук / Н. А. Болотина // 03.00.04 “Биохимия”. – Москва, 2008. – 18 с.
  2. ДСанПіН 2.2.4-171-10 (ДСанПіН 2.2.4-400-10): Наказ МОЗУ №400 від 12.05.2010. Редакція від 19.09.2011. 25 с.
  3. Гірій, В. А. Стан забруднення навколишнього середовища території України у 2011 році [Текст] / В. А. Гірій, І. А. Колісник, О. О. Косовець // Праці центральної геофізичної обсерваторії. – 2012. – Вип. 8(22). – С. 27–42.
  4. Басова, Е. М. Современное состояние высокоэффективной жидкостной хроматографии полициклических ароматических углеводородов [Текст] / Е. М. Басова, В. М. Иванов // Вестн. Моск. ун-та. – 2011. – Т. 52, № 3. – С. 163–174.
  5. Xiu-Ying, Li. A Novel Synchronous Fluorescence Spectroscopic Approach for the Rapid Determination of Three Polycyclic Aromatic Hydrocarbons in Tea with Simple Microwave-Assisted Pretreatment of Sample [Text] / Xiu-Ying Li, Na Li, He-Dong Luo et al. // J. Agric. Food Chem. – 2011. – Vol. 59(11). – P. 5899–5905.
  6. Глушков, А. Н. Моноклональные антитела к химическим канцерогенам группы полициклических ароматических углеводородов [Текст] / А. Н. Глушков, С. В. Апалько, В. А. Матвеева // Рос. иммунологический журнал. – 2009. – № 3. – С. 30–38.
  7. Гречищева, Н. Ю. Исследование связывающей способности модифицированных гуминовых препаратов по отношению к пирену в гомогенной и гетерогенной фазах [Текст] / Н. Ю. Гречищева, Хань Пань, Г. C. Будылин // Защита окружающей среды в нефтегазовом комплексе. – 2011. – № 6. – С. 24–29.
  8. Петрухин, О. М. Сенсоры в аналитической химии [Текст] / О. М. Петрухин, О. О. Максименко // Рос. хим. ж. – 2008. – Т. LII, № 2. – С. 3–6.
  9. Jiang, H. Anodic Electrochemiluminescence of CdTe Quantum Dots and Its Energy Transfer for Detection of Catechol Derivatives [Text] / H. Jiang, L. Jianping, J. Huangxian // Anal. Chem. ‑ 2007. – Vol. 79. ‑ P. 8055–8060.
  10. Jiang, H. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/ peroxide system [Text] / H. Jiang, H. Ju // Anal Chem. – 2007. – Vol. 79(17). – Р. 6690–6696.
  11. Talapin, D. V. Size-Dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution [Text] / D. V. Talapin, M. Gao, A. Eychmuller et al. // J. Phys. Chem. B. ‑ 2005. – Vol. 109. ‑ P. 1094‑1100.
  12. Gaponik, N. Electrochemical probing of thiol-capped nanocrystals [Text] / N. Gaponik, A. Shavel1, A. Eychmuller. // Microchim Acta. ‑ 2008. – Vol. 160. ‑ P. 327–334.
  13. Bae, Y. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles [Text] / Y. Bae, N. Myung, A. J. Bard // NanoLett. – 2004. – Vol. 4(6). – P. 1153–1161.
  14. Ding, Zh. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots [Text] / Zh. Ding, B. M. Quinn, S. K. Haram // Science. – 2002. – Vol. 296. – P. 1293–1297.
  15. Suk, J. Electrochemistry and Electrogenerated Chemiluminescence of Twisted Anthracene-Functionalized Bimesitylenes [Text] / J. Suk, P. Natarajan, A. J. Bard // J. Am. Chem. Soc. – 2012. – Vol. 134(7). – P. 3451–3460.
  16. Seo, J. Polymer Nanocomposite Photovoltaics Utilizing CdSe Nanocrystals Capped with a Thermally Cleavable Solublizing Ligand [Text] / J. Seo, W.J. Kim, P.N. Prasad et al. // Appl. Phys. Lett. – 2009. – Vol. 94. – P. 133302–3.
  17. Manciu, F. S. Size-dependent Raman and infrared studies of PbSe nanoparticles [Text] / F. S. Manciu, Y. Sahoo, P. N. Prasad // J. Raman Spectroscopy. – 2008. – Vol. 39(9). – P. 1135–1140.
  18. Kim, S. J. Multiple Exciton Generation and Electrical Extraction From a PbSe Quantum Dot Photoconductor [Text] / S. J. Kim, W. J. Kim, P. N. Prasad et al. // Appl. Phys. Lett. – 2008. – Vol. 92. – P. 031107/1–3.
  19. Федоров, А. В. Оптические свойства полупроводниковых квантовых точек [Текст] / А. В. Федоров, И. Д. Рухленко и др. – СПб.: Наука, 2011. – 188 с.
  20. Klimov, V. I. Semiconductor and metal nanocrystals [Text] / V. I. Klimov. – New York: Marcel Dekker Inc., 2004. – 500 р.
  21. Murray, C. B. Synthesis and characerization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites [Text] / C. B. Murray, D. J. Norris, M. G. Bawendi // J. Am. Chem. Soc. – 1993. – Vol. 115. – P. 8706–8715.
  22. Sukhanova, A. Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin- Embedded Tissue Sections [Text] / A. Sukhanova, L. Venteo // Laboratory Investigation. – 2002. – Vol. 82(9). – 1259 p.
  23. Amelia, M. Redox properties of CdSe and CdSe–ZnSquantum dots in solution [Text] / M. Amelia, A. Tommaso et al. // Pure Appl. Chem. – 2011. – Vol. 83(1). – P. 1–8.
  24. Аминова, Р. М. Основы современной квантовой химии [Текст] / Р. М. Аминова. – Казань: КГУ, 2004. – 106 с.
  25. Boatman, E. M. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals [Text] / E. M. Boatman, G. C. Lisensky, K. J. Nordell // J. Chem. Educ. – 2005. – Vol. 82. – P. 1697–1699
  26. Сушко, О. А. Нанофотонний метод визначення органічних канцерогенів у водних середовищах [Текст] / О. А. Сушко, М. М. Рожицький // Східно-Європейський журнал передових технологій. – 2012. – Т. 1, № 5 (55). – С. 40–46.
  27. Петерс, Д. Химическое разделение и измерение. Теория и практика аналитической химии [Текст] / Д. Петерс, Дж. Хайес, Г. Хифтье; Пер. с англ. – М.: Химия, 1978. – 816 с.
  28. Сушко, О. А. Оптичний сенсор на основі напівпровідникових квантово-розмірних структур для визначення конденсованої ароматики у водних об’єктах довкілля [Текст] / О. А. Сушко, М. М. Рожицький // Системи обробки інформації. – 2013. – Т. 2 (109). – С. 259–264
  29. Bolotina, N. A. (2008). Tumor-promoter effect of polycyclic aromatic hydrocarbons. Moscow, Russia: RSMU, 18.
  30. DSanPіN 2.2.4-171-10 (DSanPіN 2.2.4-400-10). Order from 12.05.2010 №400. Version from 19.09.2011. Kyiv, Ukraine: Ministry of Health of Ukraine, 25.
  31. Hiriy, V. A., Kolesnik, I. A., Kosovets, O. O. (2012). Condition of environmental pollution of territory of Ukraine in 2011. Proceedings of the Central Geophysical Observatory, 8(22), 27–42.
  32. Basova, E. M. (2011). Current status of high performance liquid chromatography of polycyclic aromatic hydrocarbons. Mosk. Univ. J., Vol. 52, № 3, 163–174.
  33. Xiu-Ying, Li., Na, Li, He-Dong, Luo (2011). A Novel Synchronous Fluorescence Spectroscopic Approach for the Rapid Determination of Three Polycyclic Aromatic Hydrocarbons in Tea with Simple Microwave-Assisted Pretreatment of Sample. J. Agric. Food Chem., Vol. 59(11), 5899–5905.
  34. Glushkov, A. N., Apalko S. V., Matveev V. A. (2009). Monoclonal antibodies to chemical carcinogens group of polycyclic aromatic hydrocarbons. Rus. J. of Immunology, 3, 30–38.
  35. Grechishcheva, N. Yu, Han, Pan, Budylin, G. C. (2011). Investigation of the binding ability modified humic preparations in relation to pyrene in homogeneous and heterogeneous phases. Environmental protection in the oil and gas complex, № 6, 24–29.
  36. Petruhin, O. M., Maksymenko, O. O. (2008). Sensors in Analytical Chemistry. Rus. Chem. J., Vol. LII(2), 3–6.
  37. Jiang, H., Jianping, L., Huangxian, J. (2007). Anodic Electrochemiluminescence of CdTe Quantum Dots and Its Energy Transfer for Detection of Catechol Derivatives. Anal. Chem., Vol. 79, 8055–8060.
  38. Jiang, H., Ju, H. (2007). Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal Chem., Vol. 79(17), 6690–6696.
  39. Talapin, D. V., Gao, M., Eychmuller, A. (2005). Size-Dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. J. Phys. Chem. B., Vol. 109, 1094-1100.
  40. Gaponik, N., Shavel, A., Eychmuller, A. (2008). Electrochemical probing of thiol-capped nanocrystals. Microchim Acta, Vol. 160, 327–334.
  41. Bae, Y., Myung, N., Bard, A. J. (2004). Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. NanoLett., Vol. 4(6), 1153–1161.
  42. Ding, Zh., Quinn, B. M., Haram, S. K. (2002). Science, Vol. 296, 1293–1297.
  43. Suk, J., Natarajan, P., Bard, A. J. (2012). Electrochemistry and Electrogenerated Chemiluminescence of Twisted Anthracene-Functionalized Bimesitylenes. J. Am. Chem. Soc., Vol. 134(7), 3451–3460.
  44. Seo, J., Kim, W. J., Prasad, P. N. (2009). Polymer Nanocomposite Photovoltaics Utilizing CdSe Nanocrystals Capped with a Thermally Cleavable Solublizing Ligand. Appl. Phys. Lett., Vol. 94, 133 – 302.
  45. Manciu, F. S., Sahoo, Y., Prasad, P. N. (2008). Size-dependent Raman and infrared studies of PbSe nanoparticles. J. Raman Spectroscopy, Vol. 39(9), 1135–1140.
  46. Kim, S. J., Kim, W. J., Prasad P. N. (2008). Multiple Exciton Generation and Electrical Extraction From a PbSe Quantum Dot Photoconductor. Appl. Phys. Lett., Vol. 92, 31–107.
  47. Fyodorov, A. V., Rukhlenko I. D. (2011). Optical properties of semiconductor quantum dots. St. Petersburg, Russia: Science, 188.
  48. Klimov, V. I. (2004). Semiconductor and metal nanocrystals New York, USA: Marcel Dekker Inc., 500.
  49. Murray, C. B., Norris, D. J., Bawendi, M. G. (1993). Synthesis and characerization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc, 115, 8706–8715.
  50. Sukhanova, A., Venteo, L. (2002). Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections. Lab Investigation, 82(9), 1259.
  51. Amelia, M., Tommaso, A. (2011). Redox properties of CdSe and CdSe–ZnS quantum dots in solution. Pure Appl Chem, 83(1), 1–8.
  52. Aminova, R. M. (2004). The foundations of modern quantum chemistry. Kazan, Russia: KSU, 106.
  53. Boatman, E. M., Lisensky, G. C., Nordell, K. J. (2005). A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals. J Chem Educ, 82, 1697–1699.
  54. Sushko, O. A., Rozhitskii, M. M. (2012). Nanophotonic method of organic carcinogens detection in water environmental. Eastern-European journal of enterprise technologies, Vol. 1, № 5 (55), 40–46.
  55. Peters, D. G., Hayes, J. M., Hieftje, G. M. (1974). Chemical Separations and Measurements: Theory and Practice of Analytical Chemistry, New York, USA: Wiley Interscience, 816.
  56. Sushko, O. A., Rozhitskii, M. M. (2013). Optical sensor based on semiconductor quantum-sized structures for condensed aromatics detection in water environment objects. Information Processing Systems, 2(109), 259–264.

Published

2014-04-15

How to Cite

Сушко, О. А. (2014). Analytical system for 3,4-benzopyrene detection based on nanophotonic sensor. Eastern-European Journal of Enterprise Technologies, 2(5(68), 8–15. https://doi.org/10.15587/1729-4061.2014.22408

Issue

Section

Applied physics