Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224435

Keywords:

catechin, green corrosion inhibitor, chemisorption, adsorption, surface modification, Langmuir isotherm

Abstract

This work covers the effectiveness of the White tea extract as a green corrosion inhibitor and is correlated to the strength and stability bonding between the phenolic molecule and the Fe atoms in mild steel and how this interaction can be studied by altering the concentration and temperature. White tea has received considerable attention due to its capability as a corrosion inhibitor and has been extensively studied using electrochemical techniques. However, accurate and systematic functional group identification and surface modification have been missing. Our study sought to demonstrate the quantitative measurement of electrochemical impedance spectroscopy (EIS) complemented by the FTIR (Fourier transform infrared spectroscopy), Total Phenolic Test, and Raman Spectroscopy. The SEM (Scanning Electronic Microscope)/EDX (Energy-Dispersive X-Ray Spectroscopy), and AFM (Atomic Force Microscope) were used to study the surface modification. The EIS results show that the optimum inhibition efficiency was 96 % in a solution of 80 ppm at 60 °C. Acetone 70 % was used to extract White tea and gives 14.17±0.25 % phenolic compound. Spectroscopic studies show -OH, Aromatic C=C, C=O and C-O-C become major contributors in the adsorption process and are found on the surface of metals as corrosion protection. Meanwhile, the thermodynamic calculation shows the White tea was adsorbed chemically. The nearness of R2 to 1 shows the adsorption agrees with the Langmuir adsorption isotherm. Eventually, the surface modification revealed that phenol molecules are responsible to reduce the corrosion rate at 16.38×10-3 mpy. Our results are expected to provide a guideline for future research in White tea as a green corrosion inhibitor

Author Biographies

Agus Paul Setiawan Kaban, Universitas Indonesia

Master of Engineering, Post-Graduate Researcher

Department of Metallurgical and Materials Engineering

Center of Minerals Processing and Corrosion Research

Aga Ridhova, Indonesian Institute of Sciences

Metallurgy and Materials Researcher

Research Center for Metallurgy and Materials

Gadang Priyotomo, Indonesian Institute of Sciences

Doctor of Engineering, Researcher

Research group of Materials Corrosion & Protection Technology

Research Center for Metallurgy and Material

Berna Elya, Universitas Indonesia

Professor of Pharmacy

Phytochemistry and Pharmacognition Laboratory

Ahmad Maksum, Politeknik Negeri Jakarta

Doctor of Engineering

Department of Mechanical Engineering

Yunita Sadeli, Universitas Indonesia

Doctor of Engineering

Department of Metallurgical and Materials Engineering

Center of Minerals Processing and Corrosion Research

Sutopo Sutopo, Universitas Indonesia

Professor of Engineering

Center of Minerals Processing and Corrosion Research

Department of Metallurgical and Materials Engineering

Taufik Aditiyawarman, PT. Pertamina Hulu Energi; Universitas Indonesia

Master of Science

Department of Metallurgy and Material Engineering

Rini Riastuti, Universitas Indonesia

Doctor of Engineering

Department of Metallurgical and Materials Engineering

Center of Minerals Processing and Corrosion Research

Johny Wahyuadi Soedarsono, Universitas Indonesia

Doctor of Engineering, Professor

Department of Metallurgy and Material Engineering

References

  1. Atta, N. F., Fekry, A. M., Hassaneen, H. M. (2011). Corrosion inhibition, hydrogen evolution and antibacterial properties of newly synthesized organic inhibitors on 316L stainless steel alloy in acid medium. International Journal of Hydrogen Energy, 36 (11), 6462–6471. doi: https://doi.org/10.1016/j.ijhydene.2011.02.134
  2. Pradipta, I., Kong, D., Tan, J. B. L. (2019). Natural organic antioxidants from green tea inhibit corrosion of steel reinforcing bars embedded in mortar. Construction and Building Materials, 227, 117058. doi: https://doi.org/10.1016/j.conbuildmat.2019.117058
  3. Goyal, M., Kumar, S., Bahadur, I., Verma, C., Ebenso, E. E. (2018). Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. Journal of Molecular Liquids, 256, 565–573. doi: https://doi.org/10.1016/j.molliq.2018.02.045
  4. Ashassi-Sorkhabi, H., Seifzadeh, D., Hosseini, M. G. (2008). EN, EIS and polarization studies to evaluate the inhibition effect of 3H-phenothiazin-3-one, 7-dimethylamin on mild steel corrosion in 1M HCl solution. Corrosion Science, 50 (12), 3363–3370. doi: https://doi.org/10.1016/j.corsci.2008.09.022
  5. Kusumastuti, R., Pramana, R. I., Soedarsono, J. W. (2017). The use of morinda citrifolia as a green corrosion inhibitor for low carbon steel in 3.5% NaCl solution. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4978085
  6. Pramana, R. I., Kusumastuti, R., Soedarsono, J. W., Rustandi, A. (2013). Corrosion Inhibition of Low Carbon Steel by Pluchea Indica Less. in 3.5% NaCL Solution. Advanced Materials Research, 785-786, 20–24. doi: https://doi.org/10.4028/www.scientific.net/amr.785-786.20
  7. Subekti, N., Soedarsono, J. W., Riastuti, R., Sianipar, F. D. (2020). Development of environmental friendly corrosion inhibitor from the extract of areca flower for mild steel in acidic media. Eastern-European Journal of Enterprise Technologies, 2 (6 (104)), 34–45. doi: https://doi.org/10.15587/1729-4061.2020.197875
  8. Ayende, Rustandi, A., Soedarsono, J. W., Priadi, D., Sulistijono, Suprapta, D. N. et. al. (2014). Interaction of Purple Sweet Potato Extract with Ascorbic Acid in FeCl3 Solution. Applied Mechanics and Materials, 680, 32–37. doi: https://doi.org/10.4028/www.scientific.net/amm.680.32
  9. Ayende, Rustandi, A., Soedarsono, J. W., Priadi, D., Sulistijono, Suprapta, D. N. et. al. (2014). Effects of Purple Sweet Potato Extract Addition in Ascorbic Acid Inhibitor to Corrosion Rate of API 5L Steel in 3.5%NaCl Environment. Applied Mechanics and Materials, 709, 384–389. doi: https://doi.org/10.4028/www.scientific.net/amm.709.384
  10. Guo, L., Obot, I. B., Zheng, X., Shen, X., Qiang, Y., Kaya, S., Kaya, C. (2017). Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Applied Surface Science, 406, 301–306. doi: https://doi.org/10.1016/j.apsusc.2017.02.134
  11. Lgaz, H., Salghi, R., Jodeh, S., Hammouti, B. (2017). Effect of clozapine on inhibition of mild steel corrosion in 1.0 M HCl medium. Journal of Molecular Liquids, 225, 271–280. doi: https://doi.org/10.1016/j.molliq.2016.11.039
  12. Lashgari, S. M., Yari, H., Mahdavian, M., Ramezanzadeh, B., Bahlakeh, G., Ramezanzadeh, M. (2020). Unique 2-methylimidazole based Inorganic Building Brick nano-particles (NPs) functionalized with 3-aminopropyltriethoxysilane with excellent controlled corrosion inhibitors delivery performance; Experimental coupled with molecular/DFT-D simulations. Journal of the Taiwan Institute of Chemical Engineers, 117, 209–222. doi: https://doi.org/10.1016/j.jtice.2020.11.035
  13. Røge, R., Møller, B. K., Andersen, C. R., Correll, C. U., Nielsen, J. (2012). Immunomodulatory effects of clozapine and their clinical implications: What have we learned so far? Schizophrenia Research, 140 (1-3), 204–213. doi: https://doi.org/10.1016/j.schres.2012.06.020
  14. -methylimidazole named as a hazardous chemical (2020). Focus on Catalysts, 2020 (11), 3. doi: https://doi.org/10.1016/j.focat.2020.10.011
  15. Caldona, E. B., Zhang, M., Liang, G., Hollis, T. K., Webster, C. E., Smith, D. W., Wipf, D. O. (2021). Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds. Journal of Electroanalytical Chemistry, 880, 114858. doi: https://doi.org/10.1016/j.jelechem.2020.114858
  16. Soedarsono, J. W., Shihab, M. N., Azmi, M. F., Maksum, A. (2018). Study of curcuma xanthorrhiza extract as green inhibitor for API 5L X42 steel in 1M HCl solution. IOP Conference Series: Earth and Environmental Science, 105, 012060. doi: https://doi.org/10.1088/1755-1315/105/1/012060
  17. Kaban, E. E., Maksum, A., Permana, S., Soedarsono, J. W. (2018). Utilization of secang heartwood (caesalpinia sappan l) as a green corrosion inhibitor on carbon steel (API 5L Gr. B) in 3.5% NaCl environment. IOP Conference Series: Earth and Environmental Science, 105, 012062. doi: https://doi.org/10.1088/1755-1315/105/1/012062
  18. Arlan, A. S., Subekti, N., Soedarsono, J. W., Rustandi, A. (2018). Corrosion Inhibition by a Caesalpinia Sappan L Modified Imidazoline for Carbon Steel API 5L Grade X60 in HCl 1M Environment. Materials Science Forum, 929, 158–170. doi: https://doi.org/10.4028/www.scientific.net/msf.929.158
  19. Ayende, Rachmanda, F., Soedarsono, J. W., Priadi, D., Sulistijono, S. (2013). Corrosion Behavior of API-5L in Various Green Inhibitors. Advanced Materials Research, 634-638, 689–695. doi: https://doi.org/10.4028/www.scientific.net/amr.634-638.689
  20. Rustandi, A., Soedarsono, J. W., Suharno, B. (2011). The Use of Mixture of Piper Betle and Green Tea as a Green Corrosion Inhibitor for API X-52 Steel in Aerated 3.5 % NaCl Solution at Various Rotation Rates. Advanced Materials Research, 383-390, 5418–5425. doi: https://doi.org/10.4028/www.scientific.net/amr.383-390.5418
  21. Verma, C., Verma, D. K., Ebenso, E. E., Quraishi, M. A. (2018). Sulfur and phosphorus heteroatom-containing compounds as corrosion inhibitors: An overview. Heteroatom Chemistry, 29 (4), e21437. doi: https://doi.org/10.1002/hc.21437
  22. Loto, R. T. (2018). Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions. Results in Physics, 8, 172–179. doi: https://doi.org/10.1016/j.rinp.2017.12.003
  23. Oliveira, P. F., Tomás, G. D., Dias, T. R., Martins, A. D., Rato, L., Alves, M. G., Silva, B. M. (2015). White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage. Reproductive BioMedicine Online, 31 (4), 544–556. doi: https://doi.org/10.1016/j.rbmo.2015.06.021
  24. Ryan, P., Hynes, M. J. (2007). The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). Journal of Inorganic Biochemistry, 101 (4), 585–593. doi: https://doi.org/10.1016/j.jinorgbio.2006.12.001
  25. Pradipta, I., Kong, D., Tan, J. B. L. (2019). Natural organic antioxidants from green tea form a protective layer to inhibit corrosion of steel reinforcing bars embedded in mortar. Construction and Building Materials, 221, 351–362. doi: https://doi.org/10.1016/j.conbuildmat.2019.06.006
  26. Yadav, M., Sinha, R. R., Kumar, S., Sarkar, T. K. (2015). Corrosion inhibition effect of spiropyrimidinethiones on mild steel in 15% HCl solution: insight from electrochemical and quantum studies. RSC Advances, 5 (87), 70832–70848. doi: https://doi.org/10.1039/c5ra14406j
  27. Verma, C., Olasunkanmi, L. O., Ebenso, E. E., Quraishi, M. A. (2018). Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: A review. Journal of Molecular Liquids, 251, 100–118. doi: https://doi.org/10.1016/j.molliq.2017.12.055
  28. El-Abbasy, H. M., Nazeer, A. A., Fouda, A. S. (2016). Electrochemical assessment of inhibitive behavior of some antibacterial drugs on 316 stainless steel in acidic medium. Protection of Metals and Physical Chemistry of Surfaces, 52 (3), 562–573. doi: https://doi.org/10.1134/s2070205116030084
  29. Shabri, S., Rohdiana, D. (2016). Optimization and characterization of green tea polyphenol extract from various solvents. Jurnal Penelitian Teh Dan Kina, 19 (1). doi: https://doi.org/10.22302/pptk.jur.jptk.v19i1.82
  30. Ebenso, E. E., Eddy, N. O., Odiongenyi, A. O. (2008). Corrosion inhibitive properties and adsorption behaviour of ethanol extract of Piper guinensis as a green corrosion inhibitor for mild steel in H2SO4. African Journal of Pure and Applied Chemistry, 2 (11), 107–115. Available at: https://www.researchgate.net/publication/285020680_Corrosion_inhibitive_properties_and_adsorption_behaviour_of_ethanol_extract_of_Piper_guinensis_as_a_green_corrosion_inhibitor_for_mild_steel_in_H2SO4
  31. Singleton, V. L., Orthofer, R., Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152–178. doi: https://doi.org/10.1016/s0076-6879(99)99017-1
  32. Calderón, J. A., Vásquez, F. A., Carreño, J. A. (2017). Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions. Materials Chemistry and Physics, 185, 218–226. doi: https://doi.org/10.1016/j.matchemphys.2016.10.026
  33. Ghailane, T., Balkhmima, R. A., Ghailane, R., Souizi, A., Touir, R., Ebn Touhami, M. et. al. (2013). Experimental and theoretical studies for mild steel corrosion inhibition in 1M HCl by two new benzothiazine derivatives. Corrosion Science, 76, 317–324. doi: https://doi.org/10.1016/j.corsci.2013.06.052
  34. Chelliah, N. M., Padaikathan, P., Kumar, R. (2019). Evaluation of electrochemical impedance and biocorrosion characteristics of as-cast and T4 heat treated AZ91 Mg-alloys in Ringer's solution. Journal of Magnesium and Alloys, 7 (1), 134–143. doi: https://doi.org/10.1016/j.jma.2019.01.005
  35. Siddiqui, N., Rauf, A., Latif, A., Mahmood, Z. (2017). Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa ( Nepeta bracteata Benth). Journal of Taibah University Medical Sciences, 12 (4), 360–363. doi: https://doi.org/10.1016/j.jtumed.2016.11.006
  36. Piluzza, G., Bullitta, S. (2011). Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical Biology, 49 (3), 240–247. doi: https://doi.org/10.3109/13880209.2010.501083
  37. Sedik, A., Lerari, D., Salci, A., Athmani, S., Bachari, K., Gecibesler, İ. H., Solmaz, R. (2020). Dardagan Fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: Electrochemical and surface morphological studies. Journal of the Taiwan Institute of Chemical Engineers, 107, 189–200. doi: https://doi.org/10.1016/j.jtice.2019.12.006
  38. Li, X.-H., Deng, S.-D., Fu, H. (2010). Inhibition by Jasminum nudiflorum Lindl. leaves extract of the corrosion of cold rolled steel in hydrochloric acid solution. Journal of Applied Electrochemistry, 40 (9), 1641–1649. doi: https://doi.org/10.1007/s10800-010-0151-5
  39. Sanni, O., Popoola, A. P. I., Fayomi, O. S. I. (2019). Temperature Effect, Activation Energies and Adsorption Studies of Waste Material as Stainless Steel Corrosion Inhibitor in Sulphuric Acid 0.5 M. Journal of Bio- and Tribo-Corrosion, 5 (4). doi: https://doi.org/10.1007/s40735-019-0280-2
  40. Singh, A. K., Quraishi, M. A. (2011). Investigation of the effect of disulfiram on corrosion of mild steel in hydrochloric acid solution. Corrosion Science, 53 (4), 1288–1297. doi: https://doi.org/10.1016/j.corsci.2011.01.002
  41. Bentiss, F., Lebrini, M., Lagrenée, M. (2005). Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system. Corrosion Science, 47 (12), 2915–2931. doi: https://doi.org/10.1016/j.corsci.2005.05.034
  42. Khodyrev, Y. P., Batyeva, E. S., Badeeva, E. K., Platova, E. V., Tiwari, L., Sinyashin, O. G. (2011). The inhibition action of ammonium salts of O,O′-dialkyldithiophosphoric acid on carbon dioxide corrosion of mild steel. Corrosion Science, 53 (3), 976–983. doi: https://doi.org/10.1016/j.corsci.2010.11.030
  43. Scardino, A. J., Hudleston, D., Peng, Z., Paul, N. A., de Nys, R. (2009). Biomimetic characterisation of key surface parameters for the development of fouling resistant materials. Biofouling, 25 (1), 83–93. doi: https://doi.org/10.1080/08927010802538480
  44. Noorbakhsh Nezhad, A. H., Davoodi, A., Mohammadi Zahrani, E., Arefinia, R. (2020). The effects of an inorganic corrosion inhibitor on the electrochemical behavior of superhydrophobic micro-nano structured Ni films in 3.5% NaCl solution. Surface and Coatings Technology, 395, 125946. doi: https://doi.org/10.1016/j.surfcoat.2020.125946
  45. King, A. D., Birbilis, N., Scully, J. R. (2014). Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochimica Acta, 121, 394–406. doi: https://doi.org/10.1016/j.electacta.2013.12.124
  46. Sultana, B., Anwar, F., Ashraf, M. (2009). Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules, 14 (6), 2167–2180. doi: https://doi.org/10.3390/molecules14062167
  47. Bhebhe, M., Füller, T. N., Chipurura, B., Muchuweti, M. (2015). Effect of Solvent Type on Total Phenolic Content and Free Radical Scavenging Activity of Black Tea and Herbal Infusions. Food Analytical Methods, 9 (4), 1060–1067. doi: https://doi.org/10.1007/s12161-015-0270-z
  48. Villamil, R. F. V., Corio, P., Agostinho, S. M. L., Rubim, J. C. (1999). Effect of sodium dodecylsulfate on copper corrosion in sulfuric acid media in the absence and presence of benzotriazole. Journal of Electroanalytical Chemistry, 472 (2), 112–119. doi: https://doi.org/10.1016/s0022-0728(99)00267-3
  49. Porcayo-Calderon, J., Martínez De La Escalera, L. M., Canto, J., Casales-Diaz, M. (2015). Imidazoline derivatives based on coffee oil as CO2 corrosion inhibitor. International Journal of Electrochemical Science, 10 (3), 3160–3176. Available at: https://www.researchgate.net/publication/272942244_Imidazoline_Derivatives_Based_on_Coffee_Oil_as_CO2_Corrosion_Inhibitor
  50. Azizi, S., Mahdavi Shahri, M., Rahman, H., Abdul Rahim, R., Rasedee, A., Mohamad, R. (2017). Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. International Journal of Nanomedicine, 12, 8841–8853. doi: https://doi.org/10.2147/ijn.s149371
  51. Li, X.-H., Deng, S.-D., Fu, H., Mu, G.-N. (2009). Inhibition by tween-85 of the corrosion of cold rolled steel in 1.0 M hydrochloric acid solution. Journal of Applied Electrochemistry, 39 (7), 1125–1135. doi: https://doi.org/10.1007/s10800-008-9770-5
  52. Bahrami, M. J., Hosseini, S. M. A., Pilvar, P. (2010). Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium. Corrosion Science, 52 (9), 2793–2803. doi: https://doi.org/10.1016/j.corsci.2010.04.024
  53. Tarantilis, P. A., Troianou, V. E., Pappas, C. S., Kotseridis, Y. S., Polissiou, M. G. (2008). Differentiation of Greek red wines on the basis of grape variety using attenuated total reflectance Fourier transform infrared spectroscopy. Food Chemistry, 111 (1), 192–196. doi: https://doi.org/10.1016/j.foodchem.2008.03.020
  54. Li, X. H., Deng, S. D., Fu, H., Mu, G. N. (2009). Inhibition action of tween-80 on the corrosion of cold rolled steel in sulfuric acid. Materials and Corrosion, 60 (12), 969–976. doi: https://doi.org/10.1002/maco.200905217
  55. Jurasekova, Z., Domingo, C., Garcia-Ramos, J. V., Sanchez-Cortes, S. (2014). Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy. Physical Chemistry Chemical Physics, 16 (25), 12802–12811. doi: https://doi.org/10.1039/c4cp00864b
  56. Hanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177 (3), 941–948. doi: https://doi.org/10.1111/j.1365-246x.2009.04122.x
  57. Soler, M. A. G., Qu, F. (2012). Raman Spectroscopy of Iron Oxide Nanoparticles. Raman Spectroscopy for Nanomaterials Characterization, 379–416. doi: https://doi.org/10.1007/978-3-642-20620-7_14
  58. Zhong, Y., Ma, C.-M., Shahidi, F. (2012). Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. Journal of Functional Foods, 4 (1), 87–93. doi: https://doi.org/10.1016/j.jff.2011.08.003
  59. Cen, H., Chen, Z., Guo, X. (2019). N, S co-doped carbon dots as effective corrosion inhibitor for carbon steel in CO2-saturated 3.5% NaCl solution. Journal of the Taiwan Institute of Chemical Engineers, 99, 224–238. doi: https://doi.org/10.1016/j.jtice.2019.02.036

Downloads

Published

2021-04-12

How to Cite

Kaban, A. P. S., Ridhova, A., Priyotomo, G., Elya, B., Maksum, A., Sadeli, Y., Sutopo, S., Aditiyawarman, T., Riastuti, R., & Soedarsono, J. W. (2021). Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution . Eastern-European Journal of Enterprise Technologies, 2(6 (110), 6–20. https://doi.org/10.15587/1729-4061.2021.224435

Issue

Section

Technology organic and inorganic substances