Development of a method of adaptive control of military radio network parameters
DOI:
https://doi.org/10.15587/1729-4061.2021.225331Keywords:
radio communication system, intentional interference, radio resource, signal fading, network topology, routingAbstract
A method of adaptive control of military radio network parameters has been developed. This method allows predicting suppressed frequencies by electronic warfare devices, determining the topology of the military radio network. Also, this method allows determining rational routes of information transmission and operating mode of radio communications. Forecasting of the electronic environment is characterized by recirculation of input data for one count, resampling on a logarithmic time scale, finding a forecast for the maximum value of entropy and resampling the forecast on the exponential time scale. The developed method allows choosing a rational network topology. The choice of topology of the military radio communication system is based on the method of ant multi-colony system. The main idea of the new option of ant colony optimization is that instead of one colony of the traditional ant algorithm several colonies are used that work together in a common search space. However, this procedure additionally takes into account the type of a priori uncertainty and the evaporation coefficient of the pheromone level. The proposed method allows choosing a rational route for information transmission. The proposed procedure is based on an improved DSR algorithm. This method uses several operating modes of radio communications, namely the technology of multi-antenna systems with noise-like signals, with pseudo-random adjustment of the operating frequency and with orthogonal frequency multiplexing. The developed method provides a gain of 10‒16 % compared to conventional management approaches
References
- Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39.
- Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et. al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
- Sliusar, V. I., Zinchenko, A. O., Zinchenko, K. A. (2015). The GSM standard mobile telecommunication system for airspace radar control needs. Suchasni informatsiyni tekhnolohiyi u sferi bezpeky ta oborony, 2 (23), 108–114.
- Sliusar, I. I., Sliusar, V. I., Smoliar, V. H., Omarov, M. I., Khomenko, R. V. (2016). Shliakhy udoskonalennia system trankinhovoho zviazku Ukrainy. Modern information system and technologies, 5, 36–47.
- Jalil Piran, M., Pham, Q.-V., Islam, S. M. R., Cho, S., Bae, B., Suh, D. Y., Han, Z. (2020). Multimedia communication over cognitive radio networks from QoS/QoE perspective: A comprehensive survey. Journal of Network and Computer Applications, 172, 102759. doi: https://doi.org/10.1016/j.jnca.2020.102759
- Khan, M. W., Zeeshan, M. (2019). QoS-based dynamic channel selection algorithm for cognitive radio based smart grid communication network. Ad Hoc Networks, 87, 61–75. doi: https://doi.org/10.1016/j.adhoc.2018.11.007
- Majumder, T., Mishra, R. K., Singh, S. S., Sahu, P. K. (2020). Robust congestion control in cognitive radio network using event-triggered sliding mode based on reaching laws. Journal of the Franklin Institute, 357 (11), 7399–7422. doi: https://doi.org/10.1016/j.jfranklin.2020.05.019
- Lin, Y.-C., Shih, Z.-S. (2018). Design and simulation of a radio spectrum monitoring system with a software-defined network. Computers & Electrical Engineering, 68, 271–285. doi: https://doi.org/10.1016/j.compeleceng.2018.03.043
- Rharras, A. E., Saber, M., Chehri, A., Saadane, R., Hakem, N., Jeon, G. (2020). Optimization of Spectrum Utilization Parameters in Cognitive Radio Using Genetic Algorithm. Procedia Computer Science, 176, 2466–2475. doi: https://doi.org/10.1016/j.procs.2020.09.328
- Tanergüçlü, T., Karaşan, O. E., Akgün, I., Karaşan, E. (2019). Radio communications interdiction problem under deterministic and probabilistic jamming. Computers & Operations Research, 107, 200–217. doi: https://doi.org/10.1016/j.cor.2019.03.013
- Kumar, S., Singh, A. K. (2018). A localized algorithm for clustering in cognitive radio networks. Journal of King Saud University - Computer and Information Sciences. doi: https://doi.org/10.1016/j.jksuci.2018.04.004
- Kaur, A., Kumar, K. (2020). Intelligent spectrum management based on reinforcement learning schemes in cooperative cognitive radio networks. Physical Communication, 43. doi: https://doi.org/10.1016/j.phycom.2020.101226
- Onumanyi, A. J., Abu-Mahfouz, A. M., Hancke, G. P. (2021). Amplitude quantization method for autonomous threshold estimation in self-reconfigurable cognitive radio systems. Physical Communication, 44. doi: https://doi.org/10.1016/j.phycom.2020.101256
- Bodyanskiy, E., Strukov, V., Uzlov, D. (2017). Generalized metrics in the problem of analysis of multidimensional data with different scales. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitrianykh Syl, 3, 98–101.
- Tymchuk, S. (2017). Methods of Complex Data Processing from Technical Means of Monitoring. Traektoriâ Nauki. Path of Science, 3 (3), 4.1–4.9. doi: https://doi.org/10.22178/pos.20-4
- Shyshatskyi, A., Sova, O., Zhuravskyi, Y., Zhyvotovskyi, R., Lyashenko, A., Cherniak, O. et. al. (2020). Development of resource distribution model of automated control system of special purpose in conditions of insufficiency of information on operational development. Technology audit and production reserves, 1 (2 (51)), 35–39. doi: https://doi.org/10.15587/2312-8372.2020.198082
- Kuchuk, N., Mohammed, A. S., Shyshatskyi, A., Nalapko, O. (2019). The method of improving the efficiency of routes selection in networks of connection with the possibility of self-organization. International Journal of Advanced Trends in Computer Science and Engineering, 8 (1.2), 1–6. Available at: http://www.warse.org/IJATCSE/static/pdf/file/ijatcse01812sl2019.pdf
- Jin, J., Xie, H., Hu, J., Yin, W.-Y. (2014). Characterization of anti-jamming effect on the Joint Tactical Information Distribution System (JTIDS) operating in complicated electromagnetic environment. 2014 International Symposium on Electromagnetic Compatibility. doi: https://doi.org/10.1109/emceurope.2014.6931048
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
- Liu, F., Marcellin, M. W., Goodman, N. A., Bilgin, A. (2013). Compressive detection of frequency-hopping spread spectrum signals. Compressive Sensing II. doi: https://doi.org/10.1117/12.2015969
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
- Shmatok, S. O., Podchashynskyi, Yu. O., Shmatok, O. S. (2007). Matematychni ta prohramni zasoby modeliuvannia prystroiv i system upravlinnia. Vykorystannia nechitkykh mnozhyn ta neironnykh merezh. Zhytomyr: ZhDTU, 280.
- Andrews, J. G. (2005). Interference cancellation for cellular systems: a contemporary overview. IEEE Wireless Communications, 12 (2), 19–29. doi: https://doi.org/10.1109/mwc.2005.1421925
- Goldsmith, A., Jafar, S. A., Jindal, N., Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21 (5), 684–702. doi: https://doi.org/10.1109/jsac.2003.810294
- Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14‒23. doi: https://doi.org/10.15587/1729-4061.2020.208554
- Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583‒5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
- Sova, O., Golub, V., Shyshatskyi, A., Ostapchuk, V., Nalapko, O., Zubrytska, H. (2019). Method of Forecasting the Duration of Data Transmission Routes in Mobile Radio Networks. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi: https://doi.org/10.1109/ukrcon.2019.8879978
- Makridenko, L. A., Volkov, S. N., Hodnenko, V. P. (2010). Kontseptual'nye voprosy sozdaniya i primeneniya malyh kosmicheskih apparatov. Voprosy elektromehaniki, 114, 15–26.
- Trotsenko, R. V., Bolotov, M. V. (2014). Data extraction process for heterogeneous sources. Privolzhskiy nauchniy vestnik, 12-1 (40), 52–54.
- Lei, Z., Yang, P., Zheng, L. (2018). Detection and Frequency Estimation of Frequency Hopping Spread Spectrum Signals Based on Channelized Modulated Wideband Converters. Electronics, 7 (9), 170. doi: https://doi.org/10.3390/electronics7090170
- Kanaa, A., Sha’ameri, A. Z. (2018). A robust parameter estimation of FHSS signals using time–frequency analysis in a non-cooperative environment. Physical Communication, 26, 9–20. doi: https://doi.org/10.1016/j.phycom.2017.10.013
- Rotshteyn, A. P. (1999). Intellektual'nye tehnologii identifikatsii: nechetkie mnozhestva, neyronnye seti, geneticheskie algoritmy. Vinnitsa: “UNIVERSUM”, 320.
- Parashchuk, I. B., Ivanov, Yu. N., Romanenko, P. G. (2010). Neyrosetevye metody v zadachah modelirovaniya i analiza effektivnosti funktsionirovaniya setey svyazi. Sankt Peterburg: VAS, 104.
- Haykin, S. (2006). Neyronnye seti: polnyy kurs. Moscow: Vil'yams, 1104.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Алексей Леонидович Налапко, Андрей Владимирович Шишацкий, Виктор Николаевич Остапчук, Касим Аббуд Махди, Руслан Николаевич Животовский, Сергей Николаевич Петрук, Евгений Вицентьевич Лебедь, Сергей Анатольевич Дяченко, Вера Петровна Величко, Илья Евгеньевич Поляк
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.