Development of Fe-5Al-1C alloys for grinding ball

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.225421

Keywords:

Fe-Al-Mn-C, microstructure, mechanical characteristics, wear, impact, corrosion resistance, grinding ball

Abstract

Our object of research is to combine the properties of Mn and the advantages of Fe-Al-C to improve the performance of grinding ball materials. Three Fe-5Al-1C alloys with compositions of 15 wt% Mn (FAM15), 20 wt% Mn (FAM20), and 25 wt% Mn (FAM25) were investigated. Argon gas was used to assist the removal of dissolved oxygen and to control the formation of metal oxides during Fe-Al-Mn-C (FAMC) fabrication. Microstructure analysis was conducted using scanning electron microscopy, and the Vickers microhardness tester was used to evaluate hardness. To guarantee the Fe-5Al-1C-Mn alloy phase, X-ray diffraction (XRD) test was performed. The EDS test was carried out to show the composition at different points and to observe the presence of several phases in the FAMC alloy system. A pin-on-disc method was employed for a dry sliding wear test, and corrosion testing was performed using the three-electrode cell polarization method. With the addition of Mn, the Vickers hardness of the FAMC alloy raised from 194.4 VHN at 15 wt% to 265 VHN at 25 wt%. The tensile strength and fracture elongation values were 424.69 MPa, 27.16 % EI; 434.72 MPa, 33.6 % EI; and 485.71 MPa, 38.48 % EI for FAM15, FAM20, and FAM25, respectively. A crucial factor for increasing the performance of grinding ball is the wear mechanism. The wear rate results for FAM25 show a decline of more than 57 % compared to FAM15 due to an increase in the hard intermetallic area. The addition of Mn elements increased the corrosion resistance of the FAMC alloys; the lowest corrosion rate occurred at 25 wt% Mn content at up to 0.036 mm/yr. According to the experimental results, the FAM25 alloys have the highest mechanical and corrosion resistance of the three types of alloys. The FAMC alloy is a promising candidate for application as a material for grinding balls by optimizing the Mn content

Author Biographies

Ratna Kartikasari, Institut Teknologi Nasional Yogyakarta

Doctor of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Adi Subardi, Institut Teknologi Nasional Yogyakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Andy Erwin Wijaya, Institut Teknologi Nasional Yogyakarta

Doctor of Mines Engineering, Assistance Professor

Department of Mines Engineering

References

  1. Jankovic, A., Valery, W., Davis, E. (2004). Cement grinding optimisation. Minerals Engineering, 17 (11-12), 1075–1081. doi: https://doi.org/10.1016/j.mineng.2004.06.031
  2. Iwasaki, I., Riemer, S. C., Orlich, J. N., Natarajan, K. A. (1985). Corrosive and abrasive wear in ore grinding. Wear, 103 (3), 253–267. doi: https://doi.org/10.1016/0043-1648(85)90014-6
  3. Jang, J. W., Iwasaki, I., Moore, J. J. (1989). The Effect of Galvanic Interaction Between Martensite and Ferrite in Grinding Media Wear. CORROSION, 45 (5), 402–407. doi: https://doi.org/10.5006/1.3582036
  4. Wei, D., Craig, I. K. (2009). Grinding mill circuits – A survey of control and economic concerns. International Journal of Mineral Processing, 90 (1-4), 56–66. doi: https://doi.org/10.1016/j.minpro.2008.10.009
  5. Jankovic, A., Wills, T., Dikmen, S. (2016). A comparison of wear rates of ball mill grinding media. Journal of Mining and Metallurgy A: Mining, 52 (1), 1–10. doi: https://doi.org/10.5937/jmma1601001j
  6. Lai, H. J., Wan, C. M. (1989). The study of work hardening in Fe-Mn-Al-C alloys. Journal of Materials Science, 24 (7), 2449–2453. doi: https://doi.org/10.1007/bf01174510
  7. Chen, F. C., Li, P., Chu, S. L., Chou, C. P. (1991). Evidence of strain-induced martensitic transformation in Fe-Mn-Al austenitic alloy steels at room temperature. Scripta Metallurgica et Materialia, 25 (3), 585–590. doi: https://doi.org/10.1016/0956-716x(91)90096-j
  8. Kim, Y. G., Han, J. M., Lee, J. S. (1989). Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys. Materials Science and Engineering: A, 114, 51–59. doi: https://doi.org/10.1016/0921-5093(89)90844-7
  9. Frommeyer, G., Brüx, U. (2006). Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels. Steel Research International, 77 (9-10), 627–633. doi: https://doi.org/10.1002/srin.200606440
  10. Kim, Y. G., Park, Y. S., Han, J. K. (1985). Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-C-X alloys. Metallurgical Transactions A, 16 (9), 1689–1693. doi: https://doi.org/10.1007/bf02663026
  11. Kalashnikov, I. S., Acselrad, O., Kalichak, T., Khadyyev, M. S., Pereira, L. C. (2000). Behavior of Fe-Mn-Al-C Steels during Cyclic Tests. Journal of Materials Engineering and Performance, 9 (3), 334–337. doi: https://doi.org/10.1361/105994900770346015
  12. Kao, C. H., Wan, C. M. (1988). Effect of temperature on the oxidation of Fe-7.5A1-o.65C alloy. Journal of Materials Science, 23 (6), 1943–1947. doi: https://doi.org/10.1007/bf01115754
  13. Natarajan, K. A. (1996). Laboratory studies on ball wear in the grinding of a chalcopyrite ore. International Journal of Mineral Processing, 46 (3-4), 205–213. doi: https://doi.org/10.1016/0301-7516(95)00093-3
  14. Chenje, T. W., Simbi, D. J., Navara, E. (2003). The role of corrosive wear during laboratory milling. Minerals Engineering, 16 (7), 619–624. doi: https://doi.org/10.1016/s0892-6875(03)00132-8
  15. Massola, C. P., Chaves, A. P., Albertin, E. (2016). A discussion on the measurement of grinding media wear. Journal of Materials Research and Technology, 5 (3), 282–288. doi: https://doi.org/10.1016/j.jmrt.2015.12.003
  16. Gupta, S. P. (2002). Intermetallic compound formation in Fe–Al–Si ternary system: Part I. Materials Characterization, 49 (4), 269–291. doi: https://doi.org/10.1016/s1044-5803(03)00006-8
  17. Harun, M., Talib, I. A., Daud, A. R. (1996). Effect of element additions on wear property of eutectic aluminium-silicon alloys. Wear, 194 (1-2), 54–59. doi: https://doi.org/10.1016/0043-1648(95)06707-8
  18. Bidmeshki, C., Abouei, V., Saghafian, H., Shabestari, S. G., Noghani, M. T. (2016). Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5%Si alloys. Journal of Materials Research and Technology, 5 (3), 250–258. doi: https://doi.org/10.1016/j.jmrt.2015.11.008
  19. Murali, S., Raman, K. S., Murthy, K. S. S. (1995). The formation of β-FeSiAl5 and Be-Fe phases in Al-7Si-0.3Mg alloy containing Be. Materials Science and Engineering: A, 190 (1-2), 165–172. doi: https://doi.org/10.1016/0921-5093(94)09602-s
  20. Mulazimoglu, M. H., Zaluska, A., Gruzleski, J. E., Paray, F. (1996). Electron microscope study of Al-Fe-Si intermetallics in 6201 aluminum alloy. Metallurgical and Materials Transactions A, 27 (4), 929–936. doi: https://doi.org/10.1007/bf02649760
  21. Shabestari, S. G., Mahmudi, M., Emamy, M., Campbell, J. (2002). Effect of Mn and Sr on intermetallics in Fe-rich eutectic Al-Si alloy. International Journal of Cast Metals Research, 15 (1), 17–24. doi: https://doi.org/10.1080/13640461.2002.11819459
  22. Ji, S., Yang, W., Gao, F., Watson, D., Fan, Z. (2013). Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys. Materials Science and Engineering: A, 564, 130–139. doi: https://doi.org/10.1016/j.msea.2012.11.095
  23. Jackson, P. R. S., Wallwork, G. R. (1984). High temperature oxidation of iron-manganese-aluminum based alloys. Oxidation of Metals, 21 (3-4), 135–170. doi: https://doi.org/10.1007/bf00741468
  24. Duh, J. G., Wang, C. J. (1990). Formation and growth morphology of oxidation-induced ferrite layer in Fe-Mn-Al-Cr-C alloys. Journal of Materials Science, 25 (4), 2063–2070. doi: https://doi.org/10.1007/bf01045765
  25. Liu, X. J., Hao, S. M., Xu, L. Y., Guo, Y. F., Chen, H. (1996). Experimental study of the phase equilibria in the Fe-Mn-Al system. Metallurgical and Materials Transactions A, 27 (9), 2429–2435. doi: https://doi.org/10.1007/bf02652336
  26. Cheng, W.-C., Liu, C.-F., Lai, Y.-F. (2002). Observing the D03 phase in Fe–Mn–Al alloys. Materials Science and Engineering: A, 337 (1-2), 281–286. doi: https://doi.org/10.1016/s0921-5093(02)00047-3
  27. Sutou, Y., Kamiya, N., Umino, R., Ohnuma, I., Ishida, K. (2010). High-strength Fe–20Mn–Al–C-based Alloys with Low Density. ISIJ International, 50 (6), 893–899. doi: https://doi.org/10.2355/isijinternational.50.893
  28. Chang, S. C., Hsiau, Y. H., Jahn, M. T. (1989). Tensile and fatigue properties of Fe-Mn-Al-C alloys. Journal of Materials Science, 24 (3), 1117–1120. doi: https://doi.org/10.1007/bf01148807
  29. Grässel, O., Krüger, L., Frommeyer, G., Meyer, L. W. (2000). High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development – properties – application. International Journal of Plasticity, 16(10-11), 1391–1409. doi: https://doi.org/10.1016/s0749-6419(00)00015-2
  30. Hua, D., Huaying, L., Zhiqiang, W., Mingli, H., Haoze, L., Qibin, X. (2013). Microstructural Evolution and Deformation Behaviors of Fe-Mn-Al-C Steels with Different Stacking Fault Energies. Steel Research International, 84 (12), 1288–1293. doi: https://doi.org/10.1002/srin.201300052
  31. Baligidad, R. G., Prasad, V. V. S., Rao, A. S. (2007). Effect of Ti, W, Mn, Mo and Si on microstructure and mechanical properties of high carbon Fe–10·5 wt-%Al alloy. Materials Science and Technology, 23 (5), 613–619. doi: https://doi.org/10.1179/174328407x158631
  32. Kim, H., Suh, D.-W., Kim, N. J. (2013). Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Science and Technology of Advanced Materials, 14(1), 014205. doi: https://doi.org/10.1088/1468-6996/14/1/014205
  33. Zuidema, B. K., Subramanyam, D. K., Leslie, W. C. (1987). The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel. Metallurgical Transactions A, 18 (9), 1629–1639. doi: https://doi.org/10.1007/bf02646146
  34. Baligidad, R. G., Prasad, K. S. (2007). Effect of Al and C on structure and mechanical properties of Fe–Al–C alloys. Materials Science and Technology, 23 (1), 38–44. doi: https://doi.org/10.1179/174328407x158389

Downloads

Published

2021-02-26

How to Cite

Kartikasari, R., Subardi, A. ., & Wijaya, A. E. . (2021). Development of Fe-5Al-1C alloys for grinding ball. Eastern-European Journal of Enterprise Technologies, 1(12 (109), 29–35. https://doi.org/10.15587/1729-4061.2021.225421

Issue

Section

Materials Science