A procedure to forecast and manage water resources and to redistribute runoff water flow when passing floods

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.228561

Keywords:

fluctuations in water levels, unsteady mode, water flow rate, efficient use of water resources, implicit boundary-difference flow scheme, MIKE 11

Abstract

Economic losses from floods have become catastrophic due to the increase in the number and scale of their propagation. Existing procedures for passing floods and pre-preparing reservoirs for flood water acceptance are ineffective and need to be improved. Therefore, the task to devise a methodology that would eliminate these shortcomings was urgent.

This paper has proposed a procedure for calculating the passage of floods based on the forecasts of water inflow, taking into consideration the characteristics of the flood wave and the mode of reservoir filling, which makes it possible to bring down (reduce) the maximum flow rate through a waterworks by accumulating floodwaters in the reservoir.

The software package Mike 11 (Danish Institute, Denmark) was employed to build a hydrodynamic model of floodwater movement along the examined river section from a hydrological station to a waterworks, which makes it possible to determine the levels of water and the flow rate in a reservoir at any time in the form of free surface curves when passing floods of various range.

Based on the devised methodology, recommendations have been compiled for the forced discharges of water through hydroelectric turbines (in m3/s) when passing floods of various probabilities (which is especially important for floods whose probability is 0.01 %). The constructed hydrodynamic model of floodwater movement through a reservoir has allowed the verification of the devised procedure.

The procedure was devised in order to effectively pass floodwaters and bring down the maximum flow rate through a waterworks.

The introduction of the methodology for calculating the passage of floods could make it possible to avoid idle water discharge through the water drains of waterworks to the lower pool and provide for the most efficient utilization of floodwater resources

Author Biographies

Dmytro Olefir, PJSC Ukrhydroenergo

Head of Commerce Department

Anna Panasenko, PJSC Ukrhydroenergo

Head of Hydro Resources Forecasting Group

Department of Forecasting, Analysis and Reporting

References

  1. Dottori, F., Di Baldassarre, G., Todini, E. (2013). Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling. Water Resources Research, 49 (9), 6079–6085. doi: https://doi.org/10.1002/wrcr.20406
  2. Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., Xu, C. (2015). Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. Journal of Hydrology, 523, 739–757. doi: https://doi.org/10.1016/j.jhydrol.2015.02.013
  3. Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve, T. et. al. (2015). Usefulness and limitations of global flood risk models. Nature Climate Change, 5 (8), 712–715. doi: https://doi.org/10.1038/nclimate2742
  4. Hall, J., Solomatine, D. (2008). A framework for uncertainty analysis in flood risk management decisions. International Journal of River Basin Management, 6 (2), 85–98. doi: https://doi.org/10.1080/15715124.2008.9635339
  5. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M. (2004). Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. John Wiley & Sons. doi: https://doi.org/10.1002/0470870958
  6. Mason, D. C., Bates, P. D., Dall’ Amico, J. T. (2009). Calibration of uncertain flood inundation models using remotely sensed water levels. Journal of Hydrology, 368 (1-4), 224–236. doi: https://doi.org/10.1016/j.jhydrol.2009.02.034
  7. Hunter, N. M., Bates, P. D., Horritt, M. S., Wilson, M. D. (2007). Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology, 90 (3-4), 208–225. doi: https://doi.org/10.1016/j.geomorph.2006.10.021
  8. Mike 11. User manual and technical references (2016). DHI.
  9. Grushevskiy, M. S. (1996). Nekotorye voprosy gidravlicheskih raschetov dlya potokov v otkrytyh ruslah. Trudy Akademii vodohozyaystvennyh nauk, 3, 174–192.
  10. Park, K., Lee, M.-H. (2019). The Development and Application of the Urban Flood Risk Assessment Model for Reflecting upon Urban Planning Elements. Water, 11 (5), 920. doi: https://doi.org/10.3390/w11050920
  11. Loboda, N. S. (2011). Vliyanie izmeneniy klimata na vodnye resursy Ukrainy (modelirovanie i prognozy po dannym klimaticheskih stsenariev). Global and regional climate changes. Kyiv: Nika-Tsentr, 340–351.
  12. Klapoushchak, O. I. (2011). Suchasni prylady, materialy i tekhnolohiyi dlia neruinivnoho kontroliu i tekhnichnoi diahnostyky mashynobudivnoho i naftohazopromyslovoho obladnannia. Suchasnyi stan kontroliu ta prohnozuvannia pavodkovykh vod: 6-ta Mizhnarodna naukovo-tekhnichna konferentsiya i vystavka. Ivano-Frankivsk, 209–214.
  13. Dellepiane, S., De Laurentiis, R., Giordano, F. (2004). Coastline extraction from SAR images and a method for the evaluation of the coastline precision. Pattern Recognition Letters, 25 (13), 1461–1470. doi: https://doi.org/10.1016/j.patrec.2004.05.022
  14. Skakun, S. V. (2001). Neiromerezhevyi metod kartohrafuvannia povenei na osnovi sputnykovykh zobrazhen. Naukovi pratsi Don-NTU, 10 (153), 52–58.
  15. Stefanyshyn, D. V., Stefanydyna, Yu. D. (2005). Vykorystannia metodu ekstrapoliatsiy pry prohnozuvanni rivniv vody v ritsi, de vidbuvaietsia transformatsiia rusla, z vrakhuvanniam ryzyku. Hidromelioratsiia ta hidrotekhnichne budivnytstvo, 30, 107–116.
  16. Alita, S. L. (2010). Metody resheniya zadach operativnogo prognoza livnevyh pavodkov po dannym radiolokatsionnyh i nazemnyh izmereniy osadkov. Nal'chik, 18.
  17. MIKE Powered by DHI. URL: https://www.mikepoweredbydhi.com/
  18. Vid pavodkiv zakarpattsiv zakhyshchatyme Berehivska polderna systema. Available at: http://www.mukachevo.net/ua/news/view/18099
  19. Baseinove upravlinnia vodnykh resursiv richky Tysa. Available at: https://buvrtysa.gov.ua/newsite/
  20. Komp'yuternoe modelirovanie rechnyh potokov. Teoreticheskie osnovy (2013). Moscow: Nauch. konsaltingovaya firma «Volga», 79.
  21. Dnistrovska HAES. Pravyla ekspluatatsiyi vodoskhovyshch Dnistrovskoho kaskadu HES ta HAES. Hidrometrychni i hidrohrafichni roboty z utochnennia obsiahu dnistrovskoho ta bufernoho vodoskhovyshch. Zakliuchnyi zvit, 732/MTsID-2-T113, PAT «Ukrhidroproekt» (2013). Kharkiv.
  22. Kiselev, P. G. (1980). Gidravlika. Osnovy mehaniki zhidkosti. Moscow: Energiya, 360.
  23. Pravila ekspluatatsii vodohranilisch Dnestrovskogo kompleksnogo gidrouzla, 589-39-T36 (1987). Moscow.
  24. Khilchevskyi, V. K., Obodovskyi, O. H., Hrebin, V. V. et. al. (2008). Zahalna hidrolohiya. Kyiv: Vydavnychopolihrafichnyi tsentr «Kyivskyi universytet», 400.
  25. MIKE 11. Komp'yuternoe modelirovanie sistem rek i kanalov. Kratkoe rukovodstvo pol'zovatelya (2013). Moscow: Nauchnaya konsaltingovaya firma “Volga”, 47.
  26. Krakovskaya, S. V., Palamarchuk, L. V., Shedemenko, I. P., Dyukel', G. A., Gnatyuk, N. V. (2010). Chislenniy prognoz regional'nogo klimata Ukrainy na osnove stsenariev vozmozhnyh global'nyh klimaticheskih izmeneniy v XXI veke (Zaklyuchitel'nyy otchet). No. gos. registratsii 0108U007657.
  27. Snizhko, S., Kuprikov, І., Shevchenko, O. (2012). Otsenka izmeneniya vodnogo stoka rek Ukrainy na osnove vodno-balansovyh modeley. Fizychna heohrafiya ta heomorfolohiya, 2 (66), 157–161.
  28. Markus, M., Cai, X., Sriver, R. (2019). Extreme Floods and Droughts under Future Climate Scenarios. Water, 11 (8), 1720. doi: https://doi.org/10.3390/w11081720
  29. Albrecher, H., Kortschak, D., Prettenthaler, F. (2020). Spatial Dependence Modeling of Flood Risk Using Max-Stable Processes: The Example of Austria. Water, 12 (6), 1805. doi: https://doi.org/10.3390/w12061805
  30. Hudson, P., Botzen, W. J. W., Poussin, J., Aerts, J. C. J. H. (2017). Impacts of Flooding and Flood Preparedness on Subjective Well-Being: A Monetisation of the Tangible and Intangible Impacts. Journal of Happiness Studies, 20 (2), 665–682. doi: https://doi.org/10.1007/s10902-017-9916-4
  31. Gray, C., Kammer, F., Löffler, M., Silveira, R. I. (2012). Removing local extrema from imprecise terrains. Computational Geometry, 45 (7), 334–349. doi: https://doi.org/10.1016/j.comgeo.2012.02.002
  32. Kuhlicke, C., Seebauer, S., Hudson, P., Begg, C., Bubeck, P., Dittmer, C. et. al. (2020). The behavioral turn in flood risk management, its assumptions and potential implications. WIREs Water, 7 (3). doi: https://doi.org/10.1002/wat2.1418
  33. Larsen, M. A. D., Drews, M. (2019). Water use in electricity generation for water-energy nexus analyses: The European case. Science of The Total Environment, 651, 2044–2058. doi: https://doi.org/10.1016/j.scitotenv.2018.10.045

Downloads

Published

2021-04-30

How to Cite

Olefir, D., & Panasenko, A. (2021). A procedure to forecast and manage water resources and to redistribute runoff water flow when passing floods. Eastern-European Journal of Enterprise Technologies, 2(10 (110), 6–17. https://doi.org/10.15587/1729-4061.2021.228561