Light harvesting enhancement using metal nanoparticles

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.228806

Keywords:

silver nanoparticles, LSPR, light harvesting, optical response, light confinement, field enhancement, gold nanoparticles, silicon substrate

Abstract

Metal nanoparticles are very important for their optical properties when they interact with light. Metal nanoparticles have the ability to confine the collective oscillation of electrons, which is called localized surface plasmon resonance (LSPR). In this work, silver nanoparticles have been proposed to enhance light harvesting, which could be useful for different applications. Metal nanoparticles such as gold and silver nanoparticles have the ability to concentrate field in a very small space. In this study, gold and silver nanoparticles optical response was investigated using frequency domain simulation. The resonance wavelength of gold and silver nanoparticles was about 550 nm and 400 nm, respectively.

Silver nanoparticles showed better LSPR performance than gold nanoparticles. Therefore, silver nanoparticles were chosen for optical field enhancement. Here silver nanoparticles were placed on a silicon substrate for optical field enhancement. To study the effect of size on the optical response of silver nanoparticles, the optical properties of this structure with different silver nanoparticles diameter values were investigated. Silver nanoparticles with 40 nm diameters showed a better optical response. To study the effect of the distance between silver nanoparticles on the optical response, different gap values were put between silver nanoparticles. The gap value of 4 nm showed a better optical response. The obtained results showed that the localized field is strongly dependent on the metal type, size, and space between nanoparticles. In addition, the optical field concentration can be controlled by tuning the size and space between silver nanoparticles. This will support localized field enhancement. The enhanced localized field will increase the field absorption near the surface, which can be beneficial for energy harvesting applications such as solar cells and detectors

Author Biography

Mohammad Tariq Yaseen, University of Mosul

Department of Electrical Engineering

College of Engineering

References

  1. Zhang, C., Tang, N., Shang, L., Fu, L., Wang, W., Xu, F. et. al. (2017). Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/s41598-017-02590-7
  2. Wu, F., Sun, H., AJia, I. A., Roqan, I. S., Zhang, D., Dai, J. et. al. (2017). Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350 nm via step quantum well structure design. Journal of Physics D: Applied Physics, 50 (24), 245101. doi: https://doi.org/10.1088/1361-6463/aa70dd
  3. Luo, L.-B., Xie, W.-J., Zou, Y.-F., Yu, Y.-Q., Liang, F.-X., Huang, Z.-J., Zhou, K.-Y. (2015). Surface plasmon propelled high-performance CdSe nanoribbons photodetector. Optics Express, 23 (10), 12979. doi: https://doi.org/10.1364/oe.23.012979
  4. Panoiu, N. C., Sha, W. E. I., Lei, D. Y., Li, G.-C. (2018). Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20 (8), 083001. doi: https://doi.org/10.1088/2040-8986/aac8ed
  5. Wilson, W. M., Stewart, J. W., Mikkelsen, M. H. (2018). Surpassing Single Line Width Active Tuning with Photochromic Molecules Coupled to Plasmonic Nanoantennas. Nano Letters, 18 (2), 853–858. doi: https://doi.org/10.1021/acs.nanolett.7b04109
  6. Sugimoto, H., Yashima, S., Fujii, M. (2018). Hybridized Plasmonic Gap Mode of Gold Nanorod on Mirror Nanoantenna for Spectrally Tailored Fluorescence Enhancement. ACS Photonics, 5 (8), 3421–3427. doi: https://doi.org/10.1021/acsphotonics.8b00693
  7. Chen, S., Zhang, Y., Shih, T.-M., Yang, W., Hu, S., Hu, X. et. al. (2018). Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy. Nano Letters, 18 (4), 2209–2216. doi: https://doi.org/10.1021/acs.nanolett.7b04385
  8. Ma, R.-M., Oulton, R. F. (2018). Applications of nanolasers. Nature Nanotechnology, 14 (1), 12–22. doi: https://doi.org/10.1038/s41565-018-0320-y
  9. Zhang, D., Du, Y., Yang, C., Zeng, P., Yu, Y., Xie, Y. et. al. (2020). Tuning plasmonic nanostructures in graphene-based nano-sandwiches using ultraviolet/ozone functionalization. Journal of Materials Science, 56 (2), 1359–1372. doi: https://doi.org/10.1007/s10853-020-05376-x
  10. Norville, C. A., Smith, K. Z., Dawson, J. M. (2020). Parametric optimization of visible wavelength gold lattice geometries for improved plasmon-enhanced fluorescence spectroscopy. Applied Optics, 59 (8), 2308. doi: https://doi.org/10.1364/ao.384653
  11. Tavakkoli Yaraki, M., Daqiqeh Rezaei, S., Tan, Y. N. (2020). Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Physical Chemistry Chemical Physics, 22 (10), 5673–5687. doi: https://doi.org/10.1039/c9cp06029d
  12. Hooshmand, N., Bordley, J. A., El-Sayed, M. A. (2016). The Sensitivity of the Distance Dependent Plasmonic Coupling between Two Nanocubes to their Orientation: Edge-to-Edge versus Face-to-Face. The Journal of Physical Chemistry C, 120 (8), 4564–4570. doi: https://doi.org/10.1021/acs.jpcc.6b01102
  13. Zhu, W., Esteban, R., Borisov, A. G., Baumberg, J. J., Nordlander, P., Lezec, H. J. et. al. (2016). Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature Communications, 7 (1). doi: https://doi.org/10.1038/ncomms11495
  14. Weeraddana, D., Premaratne, M., Andrews, D. L. (2016). Quantum electrodynamics of resonance energy transfer in nanowire systems. Physical Review B, 93 (7). doi: https://doi.org/10.1103/physrevb.93.075151
  15. Yaseen, M. T., Rasheed, A. A. (2021). Aluminum based nanostructures for energy applications. TELKOMNIKA (Telecommunication Computing Electronics and Control), 19 (2), 683. doi: https://doi.org/10.12928/telkomnika.v19i2.18146
  16. Ho, W.-J., Su, S.-Y., Lee, Y.-Y., Syu, H.-J., Lin, C.-F. (2015). Performance-Enhanced Textured Silicon Solar Cells Based on Plasmonic Light Scattering Using Silver and Indium Nanoparticles. Materials, 8 (10), 6668–6676. doi: https://doi.org/10.3390/ma8105330
  17. Dao, V.-D., Choi, H.-S. (2016). Highly-Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Created by Means of Dry Plasma Reduction. Nanomaterials, 6 (4), 70. doi: https://doi.org/10.3390/nano6040070
  18. Cai, B., Li, X., Zhang, Y., Jia, B. (2016). Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles. Nanotechnology, 27 (19), 195401. doi: https://doi.org/10.1088/0957-4484/27/19/195401
  19. Peng, P., Liu, Y.-C., Xu, D., Cao, Q.-T., Lu, G., Gong, Q., Xiao, Y.-F. (2017). Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances. Physical Review Letters, 119 (23). doi: https://doi.org/10.1103/physrevlett.119.233901
  20. Abdullah, F. Y., Yaseen, M. T., Huseen, Y. M. (2021). Portable heartbeat rate monitoring system by WSN using LabVIEW. International Journal of Computing and Digital Systems, 10 (1), 353–360. doi: http://dx.doi.org/10.12785/ijcds/100135
  21. Flatabø, R., Coste, A., Greve, M. M. (2016). A systematic investigation of the charging effect in scanning electron microscopy for metal nanostructures on insulating substrates. Journal of Microscopy, 265 (3), 287–297. doi: https://doi.org/10.1111/jmi.12497
  22. Hugall, J. T., Singh, A., van Hulst, N. F. (2018). Plasmonic Cavity Coupling. ACS Photonics, 5 (1), 43–53. doi: https://doi.org/10.1021/acsphotonics.7b01139
  23. Vasa, P., Lienau, C. (2017). Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures. ACS Photonics, 5 (1), 2–23. doi: https://doi.org/10.1021/acsphotonics.7b00650
  24. Chevrier, K., Benoit, J.-M., Symonds, C., Paparone, J., Laverdant, J., Bellessa, J. (2017). Organic Exciton in Strong Coupling with Long-Range Surface Plasmons and Waveguided Modes. ACS Photonics, 5 (1), 80–84. doi: https://doi.org/10.1021/acsphotonics.7b00556
  25. Sun, J., Hu, H., Zheng, D., Zhang, D., Deng, Q., Zhang, S., Xu, H. (2018). Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano, 12 (10), 10393–10402. doi: https://doi.org/10.1021/acsnano.8b05880
  26. Huang, Y., Ma, L., Li, J., Zhang, Z. (2017). Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement. Nanotechnology, 28 (10), 105203. doi: https://doi.org/10.1088/1361-6528/aa5b27
  27. Liu, B., Gong, W., Yu, B., Li, P., Shen, S. (2017). Perfect Thermal Emission by Nanoscale Transmission Line Resonators. Nano Letters, 17 (2), 666–672. doi: https://doi.org/10.1021/acs.nanolett.6b03616
  28. Neubrech, F., Huck, C., Weber, K., Pucci, A., Giessen, H. (2017). Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. Chemical Reviews, 117 (7), 5110–5145. doi: https://doi.org/10.1021/acs.chemrev.6b00743
  29. Martí-Sabaté, M., Torrent, D. (2021). Dipolar Localization of Waves in Twisted Phononic Crystal Plates. Physical Review Applied, 15 (1). doi: https://doi.org/10.1103/physrevapplied.15.l011001
  30. Choi, S. W., Oh, M. W., Park, D. J., Park, S. (2020). A Simulation Study for Field Enhancement due to Multiresonant Localized Surface Plasmon Excitation in the truncated Octahedral Gold Nanoparticle Arrays. Journal of the Korean Physical Society, 77 (12), 1148–1152. doi: https://doi.org/10.3938/jkps.77.1148
  31. Van Tiggelen, B. A., Skipetrov, S. E. (2020). Longitudinal modes in diffusion and localization of light. arXiv.org. URL: https://arxiv.org/pdf/2012.11210.pdf
  32. Liu, S., Xu, Z., Yin, X., Zhao, H. (2020). Analog of multiple electromagnetically induced transparency using double-layered metasurfaces. Scientific Reports, 10 (1). doi: https://doi.org/10.1038/s41598-020-65418-x
  33. Lott, M., Roux, P., Seydoux, L., Tallon, B., Pelat, A., Skipetrov, S., Colombi, A. (2020). Localized modes on a metasurface through multiwave interactions. Physical Review Materials, 4 (6). doi: https://doi.org/10.1103/physrevmaterials.4.065203
  34. Litvin, I. A., Mueller, N. S., Reich, S. (2020). Selective excitation of localized surface plasmons by structured light. Optics Express, 28 (16), 24262. doi: https://doi.org/10.1364/oe.399225
  35. Devaraj, V., Lee, J.-M., Lee, D., Oh, J.-W. (2020). Defining the plasmonic cavity performance based on mode transitions to realize highly efficient device design. Materials Advances, 1 (2), 139–145. doi: https://doi.org/10.1039/d0ma00111b
  36. Chuntonov, L., Rubtsov, I. V. (2020). Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas. The Journal of Chemical Physics, 153 (5), 050902. doi: https://doi.org/10.1063/5.0013956
  37. Meng, Y., Zhang, Q., Lei, D., Li, Y., Li, S., Liu, Z. et. al. (2020). Plasmon‐Induced Optical Magnetism in an Ultrathin Metal Nanosphere‐Based Dimer‐on‐Film Nanocavity. Laser & Photonics Reviews, 14 (9), 2000068. doi: https://doi.org/10.1002/lpor.202000068
  38. Fang, R., Vorobyev, A., Guo, C. (2016). Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals. Light: Science & Applications, 6 (3), e16256–e16256. doi: https://doi.org/10.1038/lsa.2016.256
  39. Abid, M. I., Wang, L., Chen, Q.-D., Wang, X.-W., Juodkazis, S., Sun, H.-B. (2017). Angle-multiplexed optical printing of biomimetic hierarchical 3D textures. Laser & Photonics Reviews, 11 (2), 1600187. doi: https://doi.org/10.1002/lpor.201600187
  40. Li, X., Hu, Y., Deng, Z., Xu, D., Hou, Y., Lou, Z., Teng, F. (2017). Efficiency improvement of polymer solar cells with random micro-nanostructured back electrode formed by active layer self-aggregation. Organic Electronics, 41, 362–368. doi: https://doi.org/10.1016/j.orgel.2016.11.029
  41. Wang, X., Deng, Y., Li, Q., Huang, Y., Gong, Z., B Tom, K., Yao, J. (2016). Excitation and propagation of surface plasmon polaritons on a non-structured surface with a permittivity gradient. Light: Science & Applications, 5 (12), e16179–e16179. doi: https://doi.org/10.1038/lsa.2016.179
  42. Kats, M. A., Blanchard, R., Genevet, P., Capasso, F. (2012). Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Materials, 12 (1), 20–24. doi: https://doi.org/10.1038/nmat3443
  43. Sun, T., Metin Akinoglu, E., Guo, C., Paudel, T., Gao, J., Wang, Y. et. al. (2013). Enhanced broad-band extraordinary optical transmission through subwavelength perforated metallic films on strongly polarizable substrates. Applied Physics Letters, 102 (10), 101114. doi: https://doi.org/10.1063/1.4795151

Downloads

Published

2021-04-30

How to Cite

Yaseen, M. T. (2021). Light harvesting enhancement using metal nanoparticles . Eastern-European Journal of Enterprise Technologies, 2(5 (110), 39–45. https://doi.org/10.15587/1729-4061.2021.228806

Issue

Section

Applied physics