Devising a procedure to form the diagnostic parameters for locomotives using a principal components analysis
DOI:
https://doi.org/10.15587/1729-4061.2021.230293Keywords:
principal components analysis, parameter informativeness, latent diagnostic parameter, hydraulic transmissionAbstract
Modern diagnostic systems are characterized by that the flow of diagnostic information requires significant computational resources to process. In order to improve the reliability of the object to be diagnosed and reduce operating costs, it is necessary to improve procedures for analyzing diagnostic results. This paper suggests a procedure to form the diagnostic features of locomotive nodes based on the use of a principal components analysis. The proposed approach is distinguished by a decrease in the dimensionality of the input set of diagnostic features in order to select the sets of interconnected diagnostic parameters. Based on the selection of the sets of interconnected diagnostic features, constructing new latent diagnostic parameters has been proposed. A latent diagnostic parameter contains information that combines data from several initial diagnostic features. The result of the method is a set of latent diagnostic parameters that do not correlate with each other and reflect the behavior of the object to be diagnosed from different technical points. The application of a sufficient number of latent diagnostic parameters involved the scree test method. This paper reports the results from using the proposed approach for treating the results from diagnosing the hydraulic transmissions in locomotives. The result from applying the procedure has made it possible to propose using three latent diagnostic parameters to assess the technical condition of a locomotive’s hydraulic transmission during bench tests. The suggested parameters contain 90 % of the original information and reflect losses in the transmission, as well as the load at the input and output of the transmission.
References
- Tkachenko, V., Sapronova, S., Kulbovskiy, I., Fomin, O. (2017). Research into resistance to the motion of railroad undercarriages related to directing the wheelsets by a rail track. Eastern-European Journal of Enterprise Technologies, 5 (7 (89)), 65–72. doi: https://doi.org/10.15587/1729-4061.2017.109791
- Sapronova, S., Tkachenko, V., Fomin, O., Hatchenko, V., Maliuk, S. (2017). Research on the safety factor against derailment of railway vehicless. Eastern-European Journal of Enterprise Technologies, 6 (7 (90)), 19–25. doi: https://doi.org/10.15587/1729-4061.2017.116194
- Kapitsa, M. I., Laguta, V. V. (2013). Modeli rezhimov diagnostirovaniya tyagovogo podvizhnogo sostava s zamenoy komplektuyuschih izdeliy. Elektromahnitna sumisnist ta bezpeka na zaliznychnomu transport, 5, 56–62.
- Bodnar', B. E., Ochkasov, A. B. (2001). Vybor diagnosticheskih parametrov s ispol'zovaniem informatsionno-vesovogo kriteriya. Sbornik trudov DIIT: Transport, 7, 35–37.
- Pashkovskiy, G. S. (1981). Zadachi optimal'nogo obnaruzheniya i poiska otkazov v REA. Moscow: Radio i svyaz', 280.
- Pushkarev, I. F., Strekopytov, V. V. (1988). Nadezhnost' i tehnicheskaya diagnostika lokomotivov. Leningrad, 61.
- Lin, L., Jiang, X., Huang, Z., Hu, H. (2010). Application of advanced fault diagnosis technology in electric locomotives. International Journal of Modelling, Identification and Control, 10 (3/4), 292. doi: https://doi.org/10.1504/ijmic.2010.034581
- Falendysh, A., Sumtsov, A., Artemenko, O., Klecka, O. (2016). Simulation of changes in the steady state availability factor of shunting locomotives for various maintenance systems. Eastern-European Journal of Enterprise Technologies, 1 (3 (79)), 24–31. doi: https://doi.org/10.15587/1729-4061.2016.60640
- Kapitsa, M., Laguta, V., Kozik, Y. (2018). Selecting the Parameters of The Diagnosis of Frame Insulation Condition in Electrical Machines of Locomotives. International Journal of Engineering & Technology, 7 (4.3), 110. doi: https://doi.org/10.14419/ijet.v7i4.3.19718
- Bannikov, D., Yakovlev, S. (2020). Development of dynamic integral evaluation method of technical state of one-section electric locomotive body. Eastern-European Journal of Enterprise Technologies, 1 (7 (103)), 57–64. doi: https://doi.org/10.15587/1729-4061.2020.192468
- Moiseenko, V., Kameniev, O., Gaievskyi, V. (2017). Predicting a technical condition of railway automation hardware under conditions of limited statistical data. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 26–35. doi: https://doi.org/10.15587/1729-4061.2017.102005
- Orlov, A. I., Lutsenko, E. V. (2016). Methods of reducing space dimension of statistical data. Nauchniy zhurnal KubGAU, 119, 92–107. Available at: https://elibrary.ru/item.asp?id=26148522
- Ayvazyan, S. A., Buhshtaber, V. M., Enyukov, I. S., Meshalkin, L. D.; Ayvazyan, S. A. (Ed.) (1989). Prikladnaya statistika: Klassifikatsii i snizhenie razmernosti. Moscow: Finansy i statistika, 607.
- Subbotin, S. A. (2013). Sample formation and reduction for data mining. Radio Electronics, Computer Science, Control, 1, 113–118. doi: https://doi.org/10.15588/1607-3274-2013-1-18
- Bosov, A., Loza, P. (2014). Creation of an index of arbitrary process. Zbirnyk naukovykh prats Donetskoho instytutu zaliznychnoho transportu, 38, 68–73. Available at: http://nbuv.gov.ua/UJRN/znpdizt_2014_38_13
- Yin, S., Ding, S. X., Xie, X., Luo, H. (2014). A Review on Basic Data-Driven Approaches for Industrial Process Monitoring. IEEE Transactions on Industrial Electronics, 61 (11), 6418–6428. doi: https://doi.org/10.1109/tie.2014.2301773
- Jolliffe, I. T., Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065), 20150202. doi: https://doi.org/10.1098/rsta.2015.0202
- Bodnar, B., Bolzhelarskyi, Y., Ochkasov, O., Hryshechkina, T., Černiauskaite, L. (2018). Determination of integrated indicator for analysis of the traffic safety condition for traction rolling stock. Paper presented at the 12th International Conference on Intelligent Technologies in Logistics and Mechatronics Systems, ITELMS 2018. Panevėžys, 45–54.
- Bodnar, B., Ochkasov, O., Bodnar, E., Hryshechkina, T., Keršys, R. (2018). Safety performance analysis of the movement and operation of locomotives. Proceedings of 22nd International Scientific Conference, 839–843.
- Nadir, F., Elias, H., Messaoud, B. (2020). Diagnosis of defects by principal component analysis of a gas turbine. SN Applied Sciences, 2 (5). doi: https://doi.org/10.1007/s42452-020-2796-y
- Mnassri, B., Adel, E. M. E., Ananou, B., Ouladsine, M. (2009). Fault Detection and Diagnosis Based on PCA and a New Contribution Plot. IFAC Proceedings Volumes, 42 (8), 834–839. doi: https://doi.org/10.3182/20090630-4-es-2003.00137
- Doorsamy, W., Cronje, W. A. (2015). A method for fault detection on synchronous generators using modified principal component analysis. 2015 IEEE International Conference on Industrial Technology (ICIT). doi: https://doi.org/10.1109/icit.2015.7125162
- Zheng, M., Wu, L., Li, L., Liu, C., Wang, L., Sun, S. (2017). A modified method for fault detection and isolation of redundant inerial measurement unit in dynamic environment. 2017 36th Chinese Control Conference (CCC). doi: https://doi.org/10.23919/chicc.2017.8028460
- Cattell, R. B. (1966). The Scree Test For The Number Of Factors. Multivariate Behavioral Research, 1 (2), 245–276. doi: https://doi.org/10.1207/s15327906mbr0102_10
- Zhukovytskyy, I. V., Kliushnyk, I. A., Ochkasov, O. B., Korenyuk, R. O. (2015). Information-measuring test system of diesel locomotive hydraulic transmissions. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 5 (59), 53–65. doi: https://doi.org/10.15802/stp2015/53159
- Bodnar, B., Ochkasov, O., Bobyr, D., Korenyuk, R., Bazaras, Z. (2018). Using the Self-Braking Method when the Post-Overhaul Diagnostics of Diesel-Hydraulic Locomotives. In: 2018 Transport means proceedings of the international conference. Kaunas, 914–919.
- hukovyts’kyy, I., Kliushnyk, I. (2018). Development of a selfdiagnostics subsystem of the informationmeasuring system using anfis controllers. Eastern-European Journal of Enterprise Technologies, 1 (9 (91)), 11–19. doi: https://doi.org/10.15587/1729-4061.2018.123591
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Borys Bodnar, Oleksandr Ochkasov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.