Establishing patterns in the compatible electromagnetic and electromechanical transition processes when the starter is powered by a supercapacitor
DOI:
https://doi.org/10.15587/1729-4061.2021.232423Keywords:
electromagnetic transition processes, electromechanical transition processes, electromagnetic moment, moment of resistanceAbstract
Supercapacitors are commonly used for a guaranteed launch of diesel generators. However, the processes caused by the starting current until the starter shaft rotates are disregarded. The duration of this moment is short but its effect on the rechargeable battery, taking into consideration its service life, is significant. The shape of this pulse, its duration significantly depend on the ratio of system parameters: supercapacitor (rechargeable battery) – starter – diesel generator.
A system of differential equations has been proposed to describe the compatible electromagnetic and electromechanical processes that occur when the starter of the diesel generator is powered from the supercapacitor. A charge is used as a variable quantity. The transitional processes occurring in the stationary starter rotor and the subsequent processes caused by the growth of the electromagnetic starter moment have been taken into consideration.
This paper reports establishing those patterns that are related to the beginning of the starter movement, its entering the mode at the falling voltage of the supercapacitor, the exchange of electrical and magnetic energy accumulated in the inductive elements of the starter.
Using the charge as a variable quantity has made it possible to combine the final values of the preceding process (stationary rotor) with the initial ones of the next one (output to starting speed). Thus, a mathematical notation has been derived that considers most of the parameters of the charge circle of the supercapacitor. The possibility of using an inflated voltage of the supercapacitor to increase the accumulated energy has been clarified.
The processes have been theoretically substantiated, which makes it possible to use a small internal resistance of the starter circuit, the presence of inductive components, an abnormal capacity of the supercapacitor to form the desired shape of the electromagnetic moment. That would make it possible to take into consideration the specific requirements of various systems of guaranteed power supply.
References
- Morgos, J., Frivaldsky, M., Hanko, B., Drgona, P. (2019). Start-up power supply for automotive applications. Transportation Research Procedia, 40, 397–404. doi: https://doi.org/10.1016/j.trpro.2019.07.058
- Yuhimenko, V., Averbukh, M., Agranovich, G., Kuperman, A. (2014). Dynamics of supercapacitor bank with uncontrolled active balancer for engine starting. Energy Conversion and Management, 88, 106–112. doi: https://doi.org/10.1016/j.enconman.2014.08.033
- Kouchachvili, L., Yaïci, W., Entchev, E. (2018). Hybrid battery/supercapacitor energy storage system for the electric vehicles. Journal of Power Sources, 374, 237–248. doi: https://doi.org/10.1016/j.jpowsour.2017.11.040
- Boccaletti, C., Elia, S., Salas M, E. F., Pasquali, M. (2020). High reliability storage systems for genset cranking. Journal of Energy Storage, 29, 101336. doi: https://doi.org/10.1016/j.est.2020.101336
- Dell, R. M., Moseley, P. T., Rand, D. A. J. (2014). Batteries and Supercapacitors for Use in Road Vehicles. Towards Sustainable Road Transport, 217–259. doi: https://doi.org/10.1016/b978-0-12-404616-0.00007-4
- Pipitone, E., Vitale, G. (2020). A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 1: System analysis and modelling. Journal of Power Sources, 448, 227368. doi: https://doi.org/10.1016/j.jpowsour.2019.227368
- Ouyang, M., Zhang, W., Wang, E., Yang, F., Li, J., Li, Z. et. al. (2015). Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors. Applied Energy, 157, 595–606. doi: https://doi.org/10.1016/j.apenergy.2014.12.086
- Saw, L. H., Poon, H. M., Chong, W. T., Wang, C.-T., Yew, M. C., Yew, M. K., Ng, T. C. (2019). Numerical modeling of hybrid supercapacitor battery energy storage system for electric vehicles. Energy Procedia, 158, 2750–2755. doi: https://doi.org/10.1016/j.egypro.2019.02.033
- Rahman, A. U., Ahmad, I., Malik, A. S. (2020). Variable structure-based control of fuel cell-supercapacitor-battery based hybrid electric vehicle. Journal of Energy Storage, 29, 101365. doi: https://doi.org/10.1016/j.est.2020.101365
- Yin, C., Wu, H., Locment, F., Sechilariu, M. (2017). Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 132, 14–27. doi: https://doi.org/10.1016/j.enconman.2016.11.018
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Anatoly Panchenko, Oleh Smyrnov, Andrey Nechaus, Iryna Trunova, Anna Borysenko, Pavlo Sokhin, Ruslan Bagach
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.