Determining the effect of stator groove geometry in a traction synchronous reluctance motor with permanent magnets on the saw-shaped electromagnetic moment level

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.233270

Keywords:

synchronous reluctance motor with permanent magnets, saw-shaped moment, finite-element method, stator groove

Abstract

This paper reports the model of a magnetic field of the synchronous reluctance motor with permanent magnets that was developed on the basis of a finite-element method. The model was implemented in the FEMM finite-element analysis programming environment involving the application of the Lua-based script. The model makes it possible to determine the dependence of the engine's electromagnetic moment on the rotor rotation angle.

Determining the level of a saw-shaped moment is important for assessing its harmful effect on the structural elements of the traction motor and the drive in general.

The results of digital modeling have established the dependences of the electromagnetic moment on the rotor rotation angle. The moment has a variable component – the saw-shaped moment, whose amplitude for open grooves under a rated load mode is 182 Nm, and for semi-open grooves ‒ 90 Nm.

The use of semi-open grooves exerts a positive effect on eliminating the saw-shaped moment in a synchronous reluctance motor with permanent magnets and may be recommended for further application on engines of this type. Semi-open grooves reduce the opening of the stator groove by 2 times and lead to a smoother flux distribution under the gear division. That reduces the oscillations of the main magnetic flux. The proposed application of semi-open stator grooves makes it possible to reduce by more than 2 times the level of a saw-shaped moment of the synchronous reluctance motor with permanent magnets under a rated mode.

It has been determined that a rather positive factor is an increase of 4.8 % in the average motor moment value under a rated mode when using semi-open grooves. This is due to a decrease in the average value of magnetic resistance to the main magnetic flux. Therefore, with a simultaneous decrease in the moment's fluctuations, the transition to semi-open grooves makes it possible to improve the mass-dimensional indicators of the motor in general.

Author Biographies

Borys Liubarskyi, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor

Department of Electrical Transport and Diesel Locomotive

Ievgen Riabov, National Technical University «Kharkiv Polytechnic Institute»

PhD, Senior Researcher

Department of Electrical Transport and Diesel Locomotive

Dmytro Iakunin, National Technical University «Kharkiv Polytechnic Institute»

PhD, Associate Professor

Department of Electrical Transport and Diesel Locomotive

Oksana Dubinina, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Pedagogical Sciences, PhD, Associate Professor

Department of Computer Mathematics and Data Analysis

Oleh Nikonov, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Professor

Department of Computer Technologies and Mechatronics

Vasily Domansky, Rostov State Transport University (RSTU)

PhD, Associate Professor

Department of Informatics

References

  1. Luvishis, A. L. (2017). Asinhronniy privod: nachalo puti. Lokomotiv, 1 (721), 44–46.
  2. Luvishis, A. L. (2018). Novye lokomotivy zheleznyh dorog SShA. Zheleznodorozhniy transport, 8, 70–77.
  3. Liubarskyi, B., Demydov, A., Yeritsyan, B., Nuriiev, R., Iakunin, D. (2018). Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 29–39. doi: https://doi.org/10.15587/1729-4061.2018.127936
  4. Basov, H. H., Yatsko, S. I. (2005). Rozvytok elektrychnoho motorvahonnoho rukhomoho skladu. Ch. 2. Kharkiv: «Apeks+», 248.
  5. Bezruchenko, V. M., Varchenko, V. K., Chumak, V. V. (2003). Tiahovi elektrychni mashyny elektrorukhomoho skladu. Dnipropetrovsk: DNUZT, 252.
  6. Liubarskyi, B. G., Overianova, L. V., Riabov, I. S., Iakunin, D. I., Ostroverkh, O. O., Voronin, Y. V. (2021). Estimation of the main dimensions of the traction permanent magnet-assisted synchronous reluctance motor. Electrical Engineering & Electromechanics, 2, 3–8. doi: https://doi.org/10.20998/2074-272x.2021.2.01
  7. Stipetic, S., Zarko, D., Kovacic, M. (2016). Optimised design of permanent magnet assisted synchronous reluctance motor series using combined analytical–finite element analysis based approach. IET Electric Power Applications, 10 (5), 330–338. doi: https://doi.org/10.1049/iet-epa.2015.0245
  8. Viego-Felipe, P. R., Gómez-Sarduy, J. R., Sousa-Santos, V., Quispe-Oqueña, E. C. (2018). Motores sincrónicos de reluctancia asistidos por iman permanente: Un nuevo avance en el desarrollo de los motores eléctricos. Ingeniería, Investigación y Tecnología, 19 (3), 269–279. doi: https://doi.org/10.22201/fi.25940732e.2018.19n3.023
  9. Moghaddam, R.-R. (2011). Synchronous Reluctance Machine (SynRM) in Variable Speed Drives (VSD) Applications. Theoretical and Experimental Reevaluation. Stockholm, 260. Available at: http://www.diva-portal.org/smash/get/diva2:417890/FULLTEXT01.pdf
  10. Wu, W., Zhu, X., Quan, L., Du, Y., Xiang, Z., Zhu, X. (2018). Design and Analysis of a Hybrid Permanent Magnet Assisted Synchronous Reluctance Motor Considering Magnetic Saliency and PM Usage. IEEE Transactions on Applied Superconductivity, 28 (3), 1–6. doi: https://doi.org/10.1109/tasc.2017.2775584
  11. Uspensky, B., Avramov, K., Liubarskyi, B., Andrieiev, Y., Nikonov, O. (2019). Nonlinear torsional vibrations of electromechanical coupling of diesel engine gear system and electric generator. Journal of Sound and Vibration, 460, 114877. doi: https://doi.org/10.1016/j.jsv.2019.114877
  12. Mohd Jamil, M. L., Zolkapli, Z. Z., Jidin, A., Raja Othman, R. N. F., Sutikno, T. (2015). Electromagnetic Performance due to Tooth-tip Design in Fractional-slot PM Brushless Machines. International Journal of Power Electronics and Drive Systems (IJPEDS), 6 (4), 860. doi: https://doi.org/10.11591/ijpeds.v6.i4.pp860-868
  13. Viego, P. R., Gómez, J. R., Sousa, V., Yanes, J. P. M., Quispe, E. C. (2021). Reducing torque pulsations in PMa-SynRM: a way for improving motor performance. International Journal of Power Electronics and Drive Systems (IJPEDS), 12 (1), 67. doi: https://doi.org/10.11591/ijpeds.v12.i1.pp67-79
  14. Kolehmainen, J. (2010). Synchronous Reluctance Motor With Form Blocked Rotor. IEEE Transactions on Energy Conversion, 25 (2), 450–456. doi: https://doi.org/10.1109/tec.2009.2038579
  15. Wang, A., Li, D. (2020). Influence of unequal stator tooth width on the performance of outer-rotor permanent magnet machines. Open Physics, 18 (1), 432–438. doi: https://doi.org/10.1515/phys-2020-0175
  16. Kostenko, I. (2018). Improvement of the method of calculation of mechanical characteristics of a traction motor of direct current with combined excitation. Technology Audit and Production Reserves, 4 (1 (42)), 4–10. doi: https://doi.org/10.15587/2312-8372.2018.141384
  17. Sezen, S., Karakas, E., Yilmaz, K., Ayaz, M. (2016). Finite element modeling and control of a high-power SRM for hybrid electric vehicle. Simulation Modelling Practice and Theory, 62, 49–67. doi: https://doi.org/10.1016/j.simpat.2016.01.006
  18. Sil'vester, P., Ferrari, R. (1986). Metod konechnyh elementov dlya radioinzhenerov i inzhenerov-elektrikov. Moscow: Mir, 232.
  19. Meeker, D. (2015). Finite Element Method Magnetics. Version 4.2. User’s Manual. Available at: http://www.femm.info/Archives/doc/manual42.pdf

Downloads

Published

2021-06-30

How to Cite

Liubarskyi, B., Riabov, I., Iakunin, D., Dubinina, O., Nikonov, O., & Domansky, V. (2021). Determining the effect of stator groove geometry in a traction synchronous reluctance motor with permanent magnets on the saw-shaped electromagnetic moment level. Eastern-European Journal of Enterprise Technologies, 3(8(111), 68–74. https://doi.org/10.15587/1729-4061.2021.233270

Issue

Section

Energy-saving technologies and equipment