Development of expert system prototype for flexible reorientation women’s outerwear production

Authors

  • Світлана Ігорівна Шаповалова National Technical University of Ukraine “Kyiv Polytechnic Institute” 6, Politechnicheskaya Str., Kiev-56, bldg. 5, Ukraine https://orcid.org/0000-0002-3431-5639
  • Ольга Олександрівна Мажара National Technical University of Ukraine “Kyiv Polytechnic Institute” 6, Politechnicheskaya Str., Kiev-56, bldg. 5, Ukraine https://orcid.org/0000-0001-7887-6764

DOI:

https://doi.org/10.15587/1729-4061.2014.23338

Keywords:

transformation chain, expert system, flexible reorientation, production model, knowledge base

Abstract

The garment industry quickly becomes a highly developed branch due to the rapid development of technologies that contribute to high-quality design, cutting, manufacture. However, some design stages have not yet been formalized. For solving unformalized tasks, the expert systems are used. The research deals with developing the expert system prototype for rapid reorientation of women’s outerwear production. To form a subject environment, the textual method is used. Factor and cluster analyses are used to structure the subject environment. Thus, the main objective of the study is achieved by forming twelve individual tasks according to the number of individual groups, allocated in the subject environment of rapid reorientation of women’s outerwear production. Selection rules of transformation chain and values of additions at the level of chest, waist and hips are formed in tables. In each table, results are obtained at the intersection of several conditions.

The expert system prototype for flexible reorientation of women’s outerwear production is designed by using the empty expert system “Rapana”. The expert system prototype implements a dialogue with the user as a series of questions and answers of the user. Some answers can have a degree of confidence. The user can revise the way of decision-making after obtaining the results. Thus, necessary conditions for further development of artificial intelligence methods in the garment production design training management and for reducing risks of wrong decision-making in conditions of rapid change in project situations are created

Author Biographies

Світлана Ігорівна Шаповалова, National Technical University of Ukraine “Kyiv Polytechnic Institute” 6, Politechnicheskaya Str., Kiev-56, bldg. 5

PhD

Department of Computer-aided Design of power processes and systems

Ольга Олександрівна Мажара, National Technical University of Ukraine “Kyiv Polytechnic Institute” 6, Politechnicheskaya Str., Kiev-56, bldg. 5

PhD student

Department of Computer-aided Design of power processes and systems

References

  1. Tamble, M. Uni-rete: Specializing the rete match algorithm for the unique-attribute representation [Text] / M. Tamble, D. Kalp, P. S. Rosenbloom. – Scholl of Computer Science, Carnegie Mellon University. – Pittsburg : Computer Science Department, 1991. – 30 p.
  2. Gupta, A. Parallelism in Production Systems [Text] / A. Gupta. – London : Pitman, 1987. – 255 p.
  3. Friedman-Hill, E. Jess in Action: Java Rule-Based Systems [Text] / E. Friedman-Hill. – Greenwich : Manning Publications Co, 2003. – 480 p.
  4. Forgy, C. L. On the Efficient Implementation of Production System : PhD thesis [Text] / C. L. Forgy. – Computer Science Department, Carnegie Mellon University. – Pittsburg, 1979. – 356 p.
  5. Brant, D. A. Effects of database size on rule system performance: Five case studies. [Текст] : sevententh inter. conf. / D. A. Brant, T. Gose, B. Lofaso, D. P. Miranker // Morgan Kaufmann Publishers Inc. – San Francisco, 1991. – P. 287–296.
  6. Miranker, D. P. The organization and performance of a treat-based production system compiler [Text] / D. P. Miranker, B. J. Lofaso // IEEE Transactions on Knowledge and Data Engeneering. – 1991. – № 3(1) – P. 3–10.
  7. Perlin, M. Incremental binding-space match: The linearized matchbox algorithm [Text] : third IEEE inter. conf. / M. Perlin // Tools for Artificial Intelligence. IEEE Computer Society Press. – San Jose,1991. – P. 468–477.
  8. Wright, I. The execution kernel of rc++: Rete*, a faster rete with treat as special case [Text] / I. Wright, J. Marshall // International Journal of Intelligent Games and Simulation. – 2003. – № 2(1). – P. 36–48.
  9. McDermott, J. The efficiency of certain production system implementations [Text] / J. McDermott, A. Newell, J. Moore // Pattern-Directed Inference Systems. – 1978. – № 67. – P. 155–176.
  10. Miranker, D. P. TREAT: A New and Efficient Match Algorithm for AI Production Systems [Text] / D. P. Miranker. – London : Pitman/Morgan Kaufmann, 1990. – 144 p.
  11. Nayak, P. Comparison of rete and treat production matchers for soar (a summary) [Text] : seventh nat. conf. (AAAI-88) / P. Nayak, A. Gupta, P. Rosenbloom // Artificial Intelligence. The MIT Press. – Cambridge, 1988. – P. 693–698.
  12. Miranker, D. P. Treat: A better match algorithm for AI production systems [Text] : sixth nat. conf. (AAAI-87) / D. P. Miranker // Artificial Intelligence. The MIT Press. – Seattle, 1987. – P. 42–47.
  13. Wang, Y. A performance comparison of the rete and treat algorithms for testing database rule conditions [Text] : eighth inter. conf. / Y. Wang, E. N. Hanson // IEEE Computer Society Press. – Washington, 1992. – P. 88–97.
  14. Hanson, E. N. Gator: An optimized discrimination network for active database rule condition testing [Text] / E. N. Hanson, M. S. Hasan. – University of Florida. – Gainesville : CIS Departement, 1993. – 27 p.
  15. Perlin, M. Match box: Fine-grained parallelism at the match level [Text] : IEEE inter. workshop / M. Perlin, J. Debaud // IEEE Computer Society Press. – Fairfax, 1989. – P. 428–434.
  16. Lee, P. Hal: A faster match algorithm [Text] / P. Lee, A. M. K. Cheng // IEEE Transactions on Knowledge and Data Engeneering. – 2002. – № 14 (5). – P. 1047–1058.
  17. Tan, J. Gridmatch: A basis for integrating production systems with relational databases [Text] : IEEE inter. workshop / J. Tan, M. Maheshwari, J. Srivastava // IEEE Computer Society Press. – Herndon, 1990. – P. 400–407.
  18. Джаррантано, Дж. Экспертные системы: принципы разработки и програмирование [Текст] / Дж. Джаррантано, Г. Райли; 4-е издание.: Пер. с англ. – М.: ООО «И.Д. Вильямс», 2007 – 1152 с.
  19. Scales, D. J. Efficient matching algorithms for the soar/ops5 production system [Text] / D. J. Scales. – Scholl of Computer Science, Carnegie Mellon University. – Pittsburg : Computer Science Department, 1986. – 36 p.
  20. Doorenbos, R. Production matching for large learning systems [Text] / R. Doorenbos. – Computer Science Department, Carnegie Mellon University. – Pittsburg, 1995. – 208 p.
  21. Ishida, T. Parallel, Distributed and Multiagent Production Systems [Text] / T. Ishida. – Michigan : Springer, 1994. – 172 p.
  22. Kang, J. A. Shortening matching time in ops5 production systems [Text] / J. A. Kang, A. M. K. Cheng // IEEE Transactions on Software Engineering. – 2004. – № 30 (7). – P. 448–457.
  23. Liu, D. Rule Engine based on improvement Rete algorithm [Text] : inter. conf. / D. Liu, Gu T., Xue J. // Apperceiving Computing and Intelligence Analysis. IEEE Computer Society Press. – Chengdu, 2010. – P. 346–349.
  24. Sellis, T. Implementing large production systems in a DBMS environment: concepts and algorithms [Text] : ACM SIGMOD inter. Conf. / T. Sellis, C. C. Lin, L. Raschid // ACM Press. – New York, 1988. – P. 404–423.
  25. Berstel, B. Extending the RETE algorithm for event management [Text] : ninth inter. symposium / B. Berstel // Temporal Representation and Reasoning. IEEE Computer Society Press. – Washington, 2002. – P. 49–51.
  26. Doorenbos, R. Production Matching for Large Learning Systems [Text] / R. Doorenbos. – Computer Science Department, Carnegie Mellon University. – Pittsburg, 1995. – 208 p.
  27. Kang, J. A. Shortening matching time in OPS5 production systems [Text] / J. A. Kang // IEEE Transactions on Software Engineering. – 2004. – № 30(7). – P. 448–457.
  28. Scales, D. Efficient Matching Algorithms for the SOARlOPS Production System [Текст] / D. Scales. – Computer Science Department, Stanford University. – Stanford, 1986. – 58 p.
  29. Kelly, M. An evaluation of DRete on CUPID for OPS5 matching [Text] : 11th inter. joint conf. / M. Kelly, R. Seviora // Morgan Kaufmann Publishers. – San Francisco, 1989. – P. 84 – 90.
  30. Batory, D. The LEAPS Algorithms [Text] / D. Batory. – Computer Science Department, The University of Texas. – Austin, 1994. – 15 p.
  31. Tamble, M., Kalp, D., Rosenbloom, P. S. (1991). Uni-rete: Specializing the rete match algorithm for the unique-attribute representation. Scholl of Computer Science, Carnegie Mellon University. Pittsburg : Computer Science Department, 30.
  32. Gupta, A. (1987). Parallelism in Production Systems. London : Pitman, 255.
  33. Friedman-Hill, E. (2003). Jess in Action: Java Rule-Based Systems. Greenwich: Manning Publications Co, 480.
  34. Forgy, C. L. (1979). On the Efficient Implementation of Production System : PhD thesis. Computer Science Department, Carnegie Mellon University. Pittsburg, 356.
  35. Brant, D. A., Gose, T., Lofaso, B., Miranker, D. P. (1991). Effects of database size on rule system performance: Five case studies. Morgan Kaufmann Publishers Inc. San Francisco, 287–296.
  36. Miranker, D. P., Lofaso, B. J. (1991). The organization and performance of a treat-based production system compiler. IEEE Transactions on Knowledge and Data Engeneering, 3(1), 3–10.
  37. Perlin, M. (1991). Incremental binding-space match: The linearized matchbox algorithm. Tools for Artificial Intelligence. IEEE Computer Society Press. San Jose, 468–477.
  38. Wright, I., Marshall, J. (2003). The execution kernel of rc++: Rete*, a faster rete with treat as special case. International Journal of Intelligent Games and Simulation, 2 (1), 36–48.
  39. McDermott, J., Newell, A., Moore, J. (1978). The efficiency of certain production system implementations. Pattern-Directed Inference Systems, 67, 155–176.
  40. Miranker, D. P. (1990). TREAT: A New and Efficient Match Algorithm for AI Production Systems. London : Pitman/ Morgan Kaufmann, 144.
  41. Nayak, P., Gupta, A., Rosenbloom, P. (1988). Comparison of rete and treat production matchers for soar (a summary). Artificial Intelligence. The MIT Press. Cambridge, 693–698.
  42. Miranker, D. P. (1987). Treat: A better match algorithm for AI production systems. Artificial Intelligence. The MIT Press. Seattle, 42–47.
  43. Wang, Y. Hanson, E. N. (1992). A performance comparison of the rete and treat algorithms for testing database rule conditions. IEEE Computer Society Press. Washington, 88–97.
  44. Hanson, E. N., Hasan, M. S. (1993). Gator: An optimized discrimination network for active database rule condition testing. University of Florida. Gainesville : CIS Departement, 27.
  45. Perlin, M., Debaud, J. (1989). Match box: Fine-grained parallelism at the match level. IEEE Computer Society Press. Fairfax, 428–434.
  46. Lee, P., Cheng, A. M. K. (2002). Hal: A faster match algorithm. IEEE Transactions on Knowledge and Data Engeneering, 14 (5), 1047–1058.
  47. Tan, J., Maheshwari, M., Srivastava, J. (1990). Gridmatch: A basis for integrating production systems with relational databases. IEEE Computer Society Press. Herndon, 400–407.
  48. Dzharrantano, Dzh., Rajli, G. (2007). Jekspertnye sistemy: principy razrabotki i programirovanie. I.D. Vil’jams, 1152.
  49. Scales, D. J. (1986). Efficient matching algorithms for the soar/ops5 production system. Scholl of Computer Science, Carnegie Mellon University. Pittsburg : Computer Science Department, 36.
  50. Doorenbos, R. (1995). Production matching for large learning systems. Computer Science Department, Carnegie Mellon University. Pittsburg, 208.
  51. Ishida, T. (1994). Parallel, Distributed and Multiagent Production Systems. Michigan : Springer, 172.
  52. Kang, J. A., Cheng, A. M. K. (2004). Shortening matching time in ops5 production systems. IEEE Transactions on Software Engineering, 30 (7), 448–457.
  53. Liu, D., Gu, T., Xue, J. (2010). Rule Engine based on improvement Rete algorithm. Apperceiving Computing and Intelligence Analysis. IEEE Computer Society Press. Chengdu, 346–349.
  54. Sellis, T., Lin, C. C., Raschid, L. (1988). Implementing large production systems in a DBMS environment: concepts and algorithms. ACM Press. New York, 404–423.
  55. Berstel, B. (2002). Extending the RETE algorithm for event management. Representation and Reasoning. IEEE Computer Society Press. Washington, 49–51.
  56. Doorenbos, R. (1995). Production Matching for Large Learning Systems. Computer Science Department, Carnegie Mellon University. Pittsburg, 208.
  57. Kang, J. A. (2004). Shortening matching time in OPS5 production. IEEE Transactions on Software Engineering, 30 (7), 448–457.
  58. Scales, D. (1986). Efficient Matching Algorithms for the SOARlOPS Production System. Computer Science Department, Stanford University. Stanford, 58.
  59. Kelly, M., Seviora, R. (1989). An evaluation of DRete on CUPID for OPS5 matching. Morgan Kaufmann Publishers. San Francisco, 84–90.
  60. Batory, D. (1994). The LEAPS Algorithms. Computer Science Department, The University of Texas. Austin, 15.

Published

2014-04-14

How to Cite

Шаповалова, С. І., & Мажара, О. О. (2014). Development of expert system prototype for flexible reorientation women’s outerwear production. Eastern-European Journal of Enterprise Technologies, 2(2(68), 43–49. https://doi.org/10.15587/1729-4061.2014.23338