Oil wells hydrate formation regularities

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.233511

Keywords:

hydrate-paraffin formation, iron oxides, tubing, casing, well

Abstract

The paper considers the process of hydrate-paraffin deposits formation in oil wells. Due to the research with the author's specially designed laboratory equipment – an experimental installation containing a technological unit and an information-measuring system, the most favorable pressure-temperature conditions of hydrate formation in a wide range of pressure (0.1–120 MPa) and temperature (from –20 to +80 °C) were determined. The experimental results made it possible to determine the conditions required for hydrate deposits and iron (Fe) oxides in the range of temperature from –15 to +60 °C and pressure from 0 to 60 MPa. These results are confirmed by thermodynamic calculations of the oil-gas-hydrate phase equilibria in the annulus of the well. Data processing was performed using the methods of correlation, dispersion and regression analysis, which allowed comparing the processes of hydrates and iron (Fe) oxides formation in the annulus of oil wells. The results of the study can be used to prevent and eliminate hydrate-paraffin plugs in the downhole equipment of oil wells, and also to determine the operation mode of the well for long-term operation of the downhole equipment without complications, accidents and stops for repair works, which reduces downtime.

Author Biographies

Anna Liashenko, National University «Yuri Kondratyuk Poltava Polytechnic»

Senior Lecturer

Department of Oil and Gas Engineering and Technology

Valeriy Makarenko, National University «Yuri Kondratyuk Poltava Polytechnic»

Doctor of Technical Sciences, Professor

Department of Oil and Gas Engineering and Technology

Yuriy Vynnykov, National University «Yuri Kondratyuk Poltava Polytechnic»

Doctor of Technical Sciences, Professor

Department of Oil and Gas Engineering and Technology

Oleksandr Petrash, National University «Yuri Kondratyuk Poltava Polytechnic»

PhD, Associate Professor

Department of Oil and Gas Engineering and Technology

References

  1. Akhfash, M., Aman, Z. M., Ahn, S. Y., Johns, M. L., May, E. F. (2016). Gas hydrate plug formation in partially-dispersed water–oil systems. Chemical Engineering Science, 140, 337–347. doi: http://doi.org/10.1016/j.ces.2015.09.032
  2. Zhang, D., Huang, Q., Wang, W., Li, H., Zheng, H., Li, R. et. al. (2021). Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems. Journal of Natural Gas Science and Engineering, 88, 103799. doi: http://doi.org/10.1016/j.jngse.2021.103799
  3. Boiko, V. S., Boiko, R. V. (2010). Vydobuvannia i transportuvannia hidratoutvoriuvalnykh pryrodnykh i naftovykh haziv. Ivano-Frankivsk: Vyd.-vo «Nova Zoria», 747.
  4. Fink, J. (2021). Gas hydrate control. Petroleum Engineer's Guide to Oil Field Chemicals and Fluids. Elsevier Inc., 531–610. doi: http://doi.org/10.1016/b978-0-323-85438-2.00013-x
  5. Bai, Y., Bai, Q. (2019). Hydrates. Subsea Engineering Handbook. Elsevier Inc., 409–434. doi:10.1016/b978-0-12-812622-6.00015-4
  6. Vyatchinin, M. G., Pravednikov, N. K., Batalin, O. Yu. et. al. (1998). Usloviya i zony gidratoobrazovaniya v zatrubnom prostranstve neftyanoy skvazhiny. Neftyanoe khozyaystvo, 2, 56–57.
  7. Vyatchinin, M. G., Pravednikov, N. K., Batalin, O. Yu. et. al. (2001). Zakonomernosti gidratoobrazovaniya v zatrubnom prostranstve neftyanoy skvazhiny. Neftyanoe khozyaystvo, 4, 54–57.
  8. Greaves, D., Boxall, J., Mulligan, J., Sloan, E. D., Koh, C. A. (2008). Hydrate formation from high water content-crude oil emulsions. Chemical Engineering Science, 63 (18), 4570–4579. doi: http://doi.org/10.1016/j.ces.2008.06.025
  9. Maganov, R., Vakhitov, G., Vafina, N. (2000). Optimalnaya tekhnologiya borby s gidratoparafinovymi otlozheniyami. Neft Rossii, 3, 96–99.
  10. Vyatchinin, M. G., Batalin, O. Yu., Schepkina, N. E. (2000). Opredelenie rezhimov i zon gidratoobrazovaniya v neftyanykh skvazhinakh. Neftyanoe khozyaystvo, 7, 38–44.
  11. Liu, Y., Shi, B., Ding, L., Ma, Q., Chen, Y., Song, S. et. al. (2019). Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer. Fuel, 244, 282–295. doi: http://doi.org/10.1016/j.fuel.2019.02.014
  12. Zhong, Y., Rogers, R. E. (2000). Surfactant effects on gas hydrate formation. Chemical Engineering Science, 55 (19), 4175–4187. doi: http://doi.org/10.1016/s0009-2509(00)00072-5
  13. Davies, S. R., Boxall, J. A., Koh, C., Sloan, E. D., Hemmingsen, P. V., Kinnari, K. J., Xu, Z.-G. (2009). Predicting Hydrate-Plug Formation in a Subsea Tieback. SPE Production & Operations, 24 (4), 573–578. doi: http://doi.org/10.2118/115763-pa
  14. Daraboina, N., Pachitsas, S., von Solms, N. (2015). Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems. Fuel, 148, 186–190. doi: http://doi.org/10.1016/j.fuel.2015.01.103
  15. Vyatchinin, M. G., Batalin, O. Yu., Schepkina, N. E. (2000). Opredelenie rezhimov i zon gidratoobrazovaniya v neftyanykh skvazhinakh. Neftyanoe khozyaystvo, 7, 38–44.
  16. Mansoori, G. A. Paraffin / Wax and Waxy Crude Oil. The Role of Temperature on Heavy Organics Deposition from Petroleum Fluids. Available at: http://www.uic.edu/~mansoori/Wax.and.Waxy.Crude_html

Downloads

Published

2021-06-18

How to Cite

Liashenko, A. . ., Makarenko, V., Vynnykov, Y., & Petrash, O. (2021). Oil wells hydrate formation regularities . Eastern-European Journal of Enterprise Technologies, 3(6 (111), 19–24. https://doi.org/10.15587/1729-4061.2021.233511

Issue

Section

Technology organic and inorganic substances