Data analysis of complex objects using a modified clustering algorithm

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.23391

Keywords:

clustering, modification, modified clustering method (the Chameleon algorithm), hierarchy, graph

Abstract

At the present moment, the development of universal and reliable methods and approaches suitable for processing information from various fields, including the solution of problems that may arise in the medical field, is an urgent problem. In the treatment of complex diseases of the musculoskeletal system, whose etiology is not fully disclosed and requires additional investigation, is no exception. As a result of the analysis, it was concluded that for solving such kind of problems with ambiguous, variable data it makes sense to use a modified clustering algorithm.

The algorithm allows to apply specific, the most suitable method for current data at each stage of the study. The study of the final stage of the algorithm – integration of similar classes for obtaining the final partition.

The idea of considering a complex object − the musculoskeletal system appeared as the result of analyzing specific articles of the complex object.

As a result of the studies it was concluded that the modified clustering method with integrating similar classes for obtaining the final partition makes sense to use in experiments with a complex object − the musculoskeletal system. Experimental data will be presented with the development of the problem under consideration.

Author Biographies

Татьяна Борисовна Шатовская, Kharkiv National University of Radioelectronics Lenina 14 ave, Kharkov, Ukraine, 61166

Ph.D., Associate professor

Software engeneering Dept.

Ольга Олеговна Дорожко, Kharkiv National University of Radioelectronics Lenina 14 ave, Kharkov, Ukraine, 61166

Muster student

Software engeneering Dept.

References

  1. Ляховец, А. В. Исследование результатов применения модифицированного алгоритма хамелеон в области лечения поясничного стеноза. [Текст] / А. В. Ляховец // Восточно-Европейский Журнал передовых технологий. – 2012. – Т. 3, № 11 (57). – C. 13–16.
  2. Geisser, Michael E. Spinal canal size and clinical symptoms among persons diagnosed with lumbar spinal stenosis [Text] / Michael E. Geisser, Andrew J. Haig; Henry C. Tong, Karen S. J. Yamakawa, Douglas J. Quint, Julian T. Hoff, Jennifer A. Miner, Vaishali V. Phalke // The Clinical journal of pain. – 2007. – № 23(9). – P. 780–785.
  3. Tomkins-Lane Predictors of walking performance and walking capacity in people with lumbar spinal stenosis, low back pain, and asymptomatic controls [Text] / Tomkins-Lane, C. Christy Sara Christensen Holz, Karen S. J. Yamakawa, Vaishali V. Phalke, Doug J. Quint, Jennifer Miner, Andrew J. Haig // Archives of Physical Medicine and Rehabilitation. – 2012. – № 93(4). – P. 647–653.
  4. Красиленко, О. П. Лікування синдрому нейрогенної інтермітуючої кульгавості, обумовленого стенозом поперекового відділу хребтового каналу [Текст] / О. П. Красиленко, Ю. Є. Педаченко // Міжнародний неврологічний журнал. – 2011. – № 3. – С. 21–26.
  5. Han, J. Data Mining: Concepts and Techniques Second Edition [Text] / J. Han, M. Kamber. – MORGAN KAUFMANN PUBLISHERS, San Francisco, CA, USA, 2006. – P. 354–363
  6. Jain, Anil Algorithms for clustering data [Text] / Anil Jain, K. Dubes, C. Richard. – Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988. – 304 p.
  7. Шатовская, Т. Б. Модификация алгоритма построения графа в алгоритме Хамелеон [Текст] / Т. Б. Шатовская, А. В. Ляховец, И. В. Каменева // Искусств. интеллект. – 2012. – № 3. – С. 480–486.
  8. Chan, T. Multilevel generalized force-directed method for circuit placement [Text] / T. Chan, J. Cong, K. Sze. – In Proc. ISPD, ACM
  9. New York, NY, USA, 2005 – P. 185–192.
  10. Karypis, G. Multilevel graph partitioning schemes [Text] / G. Karypis, V. Kumar. – Minneapolis (Mn): (UMSI research report). Univ. of Minnesota, 1995 – 28 p.
  11. Karypis, G. Fast and highly quality multilevel scheme for partitioning irregular graphs [Text] : Intl. Conf. on Parallel Processing / G. Karypis, V. Kumar // SIAM J. Sci. Comput., to appear. – Society for Industrial and Applied Mathematics Philadelphia, PA, USA. – 1998. – Vol. 20, Issue 1. – P. 359–392. – Available at: http://www.cs.umn.edu/_karypis.
  12. Бериков, В. С. Современные тенденции в кластерном анализе [Текст] / В. С. Бериков, Г. С. Лбов. – Всероссийский конкурсный отбор обзорно-аналитических статей по приоритетному направлению «Информационно-телекоммуникационные системы», 2008. – 26 с.
  13. Sumathi, S. Fundamentals of relational database management systems [Text] / S. Sumathi, S. Esakkirajan. – Electronic text data. – Berlin. Heidelberg: Springer-Verlag, 2007. – P. 415–471
  14. Thangadurai, Dr. K. A Study On Rough Clustering [Text] / Dr. K. Thangadurai, M. Uma, Dr. M. Punithavalli // Global Journal of Computer Science and Technology. – 2010. – Vol. 10, Issue 5. – P. 55–58.
  15. Jain, A. K. Data Clustering: A Review [Text] / A. K. Jain, M. N. Murty, P. J. Flynn // CM Computing Surveys (CSUR). ACM Press, New York. – 1999. – Vol. 31, Issue 3. – P. 255–316.
  16. Ляховец, А. В. Экспериментальные результаты исследования качества кластеризации разнообразных наборов данных с помощью модифицированного алгоритма Хамелеон [Текст] / А. В. Ляховец // Вестник запорожского национального университета. – 2011. – № 2. – C. 86–73.
  17. Ляховец, А. В. Характеристики выборк данных для выбора k при построении графа к-ближайших соседей [Текст] : VI межд. Науч.-прак. Конф. / А. В. Ляховец // Сучасні проблеми і досягнення в галузі радіотехніки, телекомунікацій та інформаційних технологій. – Запорожье, 2012. – C. 168–169.
  18. Guojun, Gan Data Clustering: Theory, Algorithms, and Applications [Text] / Gan Guojun, Ma. Chaoqun, W. Jianhong. – ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 2007. – P. 19–320
  19. Ляховец, А. В. Исследование динамической кластеризации линейнонеразделимых зашумленных данных с помощью модифицированного алгоритма Хамелеон [Текст] / А. В. Ляховец // Научно-технический журнал “Автоматизированные системы управления и приборы автоматики”. – 2012. – C. 55–62
  20. Нейский, И. М. Классификация и сравнение методов кластеризации [Текст] / И. М. Нейский // Интеллектуальные технологии и системы. Сборник учебно-методических работ статей аспирантов и студентов. – 2008 – Вып. 8. – С. 111–122.
  21. Salamov, V. Prediction of Protein Secondary Structure by Combining Nearest-neighbor Algorithm and Multiple Sequence Alignments [Text] / V. Salamov, V. Solovyev. – J. Mol. Biol, 1995. – P. 11–15.
  22. Якобовский, М. В. Обработка сеточных данных на распределенных вычислительных системах [Текст] / М. В. Якобовский // Вопросы атомной науки и техники. Сер. «Математическое моделирование физических процессов». –2004. –Вып. 2. –29 c.
  23. Valgaerts, Levi Dynamic load balancing using space-filling curves [Electronic resource] / Technische Universität München, Institut für Informatik. – Levi Valgaerts. – Available at: http://www5.in.tum.de/lehre/seminare/clust_comp/SS05/papers/topic09.doc.
  24. Graph Partitioning Algorithms for Distributing Workloads of Parallel Computations Bradford L. Chamberlain Tech. report TR-98-10-03 [Electronic resource / Univ. of Washington, Dept. of Computer Science & Engineering, 1998. –Available at: http://www.cs.washington.edu/homes/brad/cv/pubs/degree/generals.html.
  25. Derek, Greene Graph partitioning and spectral clustering” [Electronic resource] / Greene Derek, 2004. – Available at: https://www.cs.tcd.ie/research_groups/mlg/kdp/presentations/Greene_MLG04.ppt.
  26. Marks, J. A seed-growth heuristic for graph bisection [Text] / J. Marks, W. Ruml, S. Shieber, J. Ngo; In: Battiti R., Bertossi A. A., editors // Proceedings of Algorithms andExperiments(ALEX98). – Italy: Trento, 1998. – P. 76–87.
  27. Ljahovec, A. V. (2012). Issledovanie rezul’tatov primenenija modificirovannogo algoritma hameleon v oblasti lechenija pojasnichnogo stenoza. Eastern-European journal of enterprise technologies, Vol. 3, № 11 (57), 13–16.
  28. Geisser, Michael E., Haig, Andrew J., Tong, Henry C., Karen, S. J. Yamakawa, Quint, Douglas J., Hoff, Julian T., Miner, Jennifer A., Phalke, Vaishali V. (2007). Spinal canal size and clinical symptoms among persons diagnosed with lumbar spinal stenosis. The Clinical journal of pain, 23 (9), 780–785.
  29. Tomkins-Lane, Christy, C. Sara Christensen Holz, Y amakawa, Karen S. J., Phalke, Vaishali V., Quint, Doug J., Miner, Jennifer, Haig, Andrew J. (2012). Predictors of walking performance and walking capacity in people with lumbar spinal stenosis, low back pain, and asymptomatic controls. Archives of Physical Medicine and Rehabilitation, 93 (4), 647–653.
  30. Krasilenko, O. P., Pedachenko, Ju. E. (2011). Lіkuvannja sindromu nejrogennoї іntermіtujuchoї kul’gavostі, obumovlenogo stenozom poperekovogo vіddіlu hrebtovogo kanalu. Mіzhnarodnij nevrologіchnij zhurnal, 3, 21–26.
  31. Han, J., Kamber, M. (2006). Data Mining: Concepts and Techniques Second Edition. MORGAN KAUFMANN PUBLISHERS, San Francisco, CA, USA, 354–363.
  32. Jain, Anil, Dubes, K., Richard, C. (1988). Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 304.
  33. Shatovskaja, T. B., Ljahovec, A. V., Kameneva, I. V. (2012). Modifikacija algoritma postroenija grafa v algoritme Hameleon. Iskusstv. Intellect, 3, 480–486.
  34. Chan, T., Cong, J., Sze, K. (2005). Multilevel generalized force-directed method for circuit placement. In Proc. ISPD, ACM New York, NY, USA, 185–192.
  35. Karypis, G., Kumar, V. (1995). Multilevel graph partitioning schemes. Minneapolis (Mn): (UMSI research report). Univ. of Minnesota, 28.
  36. Karypis, G., Kumar, V. (1998). Fast and highly quality multilevel scheme for partitioning irregular. SIAM J. Sci. Comput., to appear. Society for Industrial and Applied Mathematics Philadelphia, PA, USA, Vol. 20, Issue 1, 359–392. Available at: http://www.cs.umn.edu/_karypis.
  37. Berikov, V. S., Lbov, G. S. (2008). Sovremennye tendencii v klasternom analize. Vserossijskij konkursnyj otbor obzorno-analiticheskih statej po prioritetnomu napravleniju «Informacionno-telekommunikacionnye sistemy», 26.
  38. Sumathi, S., Esakkirajan, S. (2007). Fundamentals of relational database management systems. Electronic text data. Berlin. Heidelberg: Springer-Verlag, 415–471
  39. Thangadurai, Dr. K., Uma, M., Punithavalli, Dr. M. (2010). A Study On Rough Clustering. Global Journal of Computer Science and Technology, Vol. 10, Issue 5, 55–58.
  40. Jain, A. K., Murty, M. N., Flynn, P. J. (1999). Data Clustering: A Review. CM Computing Surveys (CSUR). ACM Press, New York, Vol. 31, Issue 3, 255–316.
  41. Ljahovec, A. V. (2011). Jeksperimental’nye rezul’taty issledovanija kachestva klasterizacii raznoobraznyh naborov dannyh s pomoshh’ju modificirovannogo algoritma Hameleon. Vestnik zaporozhskogo nacional’nogo universiteta, 2, 86–73.
  42. Ljahovec, A. V. (2012). Harakteristiki vybork dannyh dlja vybora k pri postroenii grafa k-blizhajshih sosedej. Suchasnі problemi і dosjagnennja v galuzі radіotehnіki, telekomunіkacіj ta іnformacіjnih tehnologіj. Zaporozh’e, 168–169.
  43. Guojun, Gan, Chaoqun, Ma., Jianhong W. (2007). Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 19–320.
  44. Ljahovec, A. V. (2012). Issledovanie dinamicheskoj klasterizacii linejnonerazdelimyh zashumlennyh dannyh s pomoshh’ju modificirovannogo algoritma Hameleon. Nauchno-tehnicheskij zhurnal “Avtomatizirovannye sistemy upravlenija i pribory avtomatiki”, 55–62.
  45. Nejskij, I. M. (2008). Klassifikacija i sravnenie metodov klasterizacii. Intellektual’nye tehnologii i sistemy. Sbornik uchebno-metodicheskih rabot statej aspirantov i studentov, Issue 8, 111–122.
  46. Salamov, V., Solovyev, V. (1995). Prediction of Protein Secondary Structure by Combining Nearest-neighbor Algorithm and Multiple Sequence Alignments. J. Mol. Biol, 11–15.
  47. Jakobovskij, M. V. (2004). Obrabotka setochnyh dannyh na raspredelennyh vychislitel’nyh sistemah. Voprosy atomnoj nauki i tehniki. Ser. «Matematicheskoe modelirovanie fizicheskih processov», Issue 2, 29.
  48. Valgaerts, Levi Dynamic load balancing using space-filling curves. Technische Universität München, Institut für Informatik. Levi Valgaerts. Available at: http://www5.in.tum.de/lehre/seminare/clust_comp/SS05/papers/topic09.doc.
  49. Graph Partitioning Algorithms for Distributing Workloads of Parallel Computations Bradford L. Chamberlain Tech. report TR-98-10-03 (1998). Univ. of Washington, Dept. of Computer Science &Engineering. Available at: http://www.cs.washington.edu/homes/brad/cv/pubs/degree/generals.html.
  50. Derek, Greene (2004). Graph partitioning and spectral clustering. Available at: https://www.cs.tcd.ie/research_groups/mlg/kdp/presentations/Greene_MLG04.ppt.
  51. Marks, J., Ruml, W., Shieber, S., Ngo, J. (1998). A seed-growth heuristic for graph bisection. Proceedings of Algorithms andExperiments(ALEX98). Italy: Trento, 76–87.

Published

2014-04-09

How to Cite

Шатовская, Т. Б., & Дорожко, О. О. (2014). Data analysis of complex objects using a modified clustering algorithm. Eastern-European Journal of Enterprise Technologies, 2(4(68), 55–59. https://doi.org/10.15587/1729-4061.2014.23391

Issue

Section

Mathematics and Cybernetics - applied aspects