Development of a mathematical model for the process of modernization of a melon cleaning machine
DOI:
https://doi.org/10.15587/1729-4061.2021.235812Keywords:
melon, processing, equipment modernization, cutting knife, peeling process, texture properties, competitive products, cleaning machine, mathematical model for melon peeling, planning matrixAbstract
The paper is devoted to the problem of increasing the efficiency of melon processing under limited production automation. Measures for equipment modernization should be carried out in accordance with the operation rules of each individual unit. In production conditions, all equipment, without exception, undergoes this process, while the corresponding documentation is drawn up, confirming the implementation of modernization within a certain time frame.
In a competitive market environment, product quality is a causal factor for the sharp increase in risks for food industry enterprises. To produce quality and competitive products, you need equipment that helps to reduce costs. The disadvantages of most melon peeling designs are size instability in the thickness of the rind. The paper presents a solution to this drawback. This was achieved by changing the sharpening angle of the rind cutting knife.
Research has been carried out to study the texture properties of “Mirzachulskaya” and “Raduzhnaya” melons. And also experiments on melon peeling based on the planning matrix of mathematical modeling. Based on the experiments, a model of the peeling process was constructed.
The key factors to limit peeling waste were optimized. Calculations of the optimized parameters yielded the cutting knife sharpening angle of 40 degrees, a roller gap of 9 mm, as well as an average force applied of 1,375 N∙m. The data obtained can be used as a basis for the modernization of this machine for other melon varieties
References
- Mallek-Ayadi, S., Bahloul, N., Kechaou, N. (2017). Characterization, phenolic compounds and functional properties of Cucumis melo L. peels. Food Chemistry, 221, 1691–1697. doi: https://doi.org/10.1016/j.foodchem.2016.10.117
- Maietti, A., Tedeschi, P., Stagno, C., Bordiga, M., Travaglia, F., Locatelli, M. et. al. (2012). Analytical Traceability of Melon (Cucumis Melo Var Reticulatus): Proximate Composition, Bioactive Compounds, and Antioxidant Capacity in Relation to Cultivar, Plant Physiology State, and Seasonal Variability. Journal of Food Science, 77 (6), C646–C652. doi: https://doi.org/10.1111/j.1750-3841.2012.02712.x
- Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., Segura-Carretero, A. (2013). Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry. Food Research International, 54 (2), 1519–1527. doi: https://doi.org/10.1016/j.foodres.2013.09.011
- Pitrat, M. (2013). Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotechnology, 30 (3), 273–278. doi: https://doi.org/10.5511/plantbiotechnology.13.0813a
- Cui, H., Ding, Z., Zhu, Q., Wu, Y., Qiu, B., Gao, P. (2021). Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-020-80149-9
- Schmilovitch, Z., Alchanatis, V., Ignat, T., Hoffman, A., Egozi, H., Ronen, B. et. al. (2015). Machinery for Fresh Cut Watermelon and Melon. Chemical engineering transactions, 44, 277–282. doi: https://doi.org/10.3303/CET1544047
- Oluwabamiwo, F., Adegoke, G., Denloye, S., Akinoso, R. (2015). Proximate composition and fatty acid profile of Nigerian melon seeds. Life Science Archives, 1, 59–65.
- Erdogan, F., Turkmen, O. (2020). Morphological characterization of the local melon genotypes of lake zone in Turkey. Fresenius Environmental Bulletin, 29 (11), 9621–9626.
- Toker, İ., Bayιndιrlι, A. (2003). Enzymatic peeling of apricots, nectarines and peaches. LWT - Food Science and Technology, 36 (2), 215–221. doi: https://doi.org/10.1016/s0023-6438(02)00203-7
- Emadi, B., Abbaspour-Fard, M. H., Yarlagadda, P. (2009). Mechanical Properties of Melon Measured by Compression, Shear, and Cutting Modes. International Journal of Food Properties, 12 (4), 780–790. doi: https://doi.org/10.1080/10942910802056143
- Singh, K. K., Shukla, B. D. (1995). Abrasive peeling of potatoes. Journal of Food Engineering, 26 (4), 431–442. doi: https://doi.org/10.1016/0260-8774(94)00065-h
- Tapia, M. R., Gutierrez-Pacheco, M. M., Vazquez-Armenta, F. J., González Aguilar, G. A., Ayala Zavala, J. F., Rahman, M. S., Siddiqui, M. W. (2014). Washing, Peeling and Cutting of Fresh-Cut Fruits and Vegetables. Minimally Processed Foods, 57–78. doi: https://doi.org/10.1007/978-3-319-10677-9_4
- Mayobre, C., Pereira, L., Eltahiri, A., Bar, E., Lewinsohn, E., Garcia-Mas, J., Pujol, M. (2021). Genetic dissection of aroma biosynthesis in melon and its relationship with climacteric ripening. Food Chemistry, 353, 129484. doi: https://doi.org/10.1016/j.foodchem.2021.129484
- Davies, R. M. (2010). Engineering Properties of Three Varieties of Melon Seeds as Potentials for Development of Melon Processing Machines. Advance Journal of Food Science and Technology, 2 (1), 119–127. Available at: https://agris.fao.org/agris-search/search.do?recordID=DJ2012046334
- Bourne, M. C. (1978). Texture profile analysis. Food Technology, 32. Available at: https://www.researchgate.net/publication/284667923_Texture_Profile_Analysis
- Iztayev, A., Kulazhanov, T. K., Yakiyayeva, M. A., Zhakatayeva, A. N., Baibatyrov, T. A. (2021). Method for the safe storage of sugar beets using an ion-ozone mixture. Acta Scientiarum Polonorum Technologia Alimentaria, 20 (1), 25–35. doi: https://doi.org/10.17306/j.afs.0865
- Lázaro, A., de Lorenzo, C. (2015). Texture Analysis in Melon Landraces through Instrumental and Sensory Methods. International Journal of Food Properties, 18 (7), 1575–1583. doi: https://doi.org/10.1080/10942912.2014.923441
- Trollope, J. R. (1982). A mathematical model of the threshing process in a conventional combine-thresher. Journal of Agricultural Engineering Research, 27 (2), 119–130. doi: https://doi.org/10.1016/0021-8634(82)90098-1
- Zhakatayeva, A., Iztayev, А., Мuldabekova, B., Yakiyayeva, М., Hrivna, L. (2020). Scientific security assessment of safety risk of raw sugar products. Periódico Tchê Química, 17 (34), 352–368.
- Tanaka, K., Akashi, Y., Fukunaga, K., Yamamoto, T., Aierken, Y., Nishida, H. et. al. (2013). Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome. Breeding Science, 63 (2), 183–196. doi: https://doi.org/10.1270/jsbbs.63.183
- Akhoundnejad, Y., Dasgan, H. Y. (2020). Photosynthesis, transpiration, stomatal conductance of some melon (Cucumic melo L.) genotypes under different drought stress. Fresenius Environmental Bulletin, 29 (12), 10974–10979.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Marzhan Kizatova, Alibek Baikenov, Nurzhan Muslimov, Kadyrbek Baigenzhinov, Zhazira Yessimova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.