Innovative technologies in the laboratory training on the course “Information-measuring complexes”

Authors

  • Владислав Дмитрович Ціделко National Technical University of Ukraine “Kyiv Polytechnic University” Prospect Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine
  • Микола Володимирович Чеховой National Technical University of Ukraine “Kyiv Polytechnic University” Prospect Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-1629-0447
  • Ольга Геннадіївна Кисельова National Technical University of Ukraine “Kyiv Polytechnic University” Prospect Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5380-9207
  • Анна Олегівна Матвійчук National Technical University of Ukraine “Kyiv Polytechnic University” Prospect Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5164-9166

DOI:

https://doi.org/10.15587/1729-4061.2014.23939

Keywords:

experiment automation, virtual instrument, measuring equipment, remote control, laboratory training

Abstract

The paper considers the principles of construction and operation of the laboratory training on an example of the course “Information-measuring complexes” that cannot be imagined without providing students with the appropriate equipment. In present conditions, these aspects require developing and applying innovative approaches based on creating virtual laboratories. The tasks of the proposed laboratory training include works on measuring the most common physical quantities: temperature, load, vibration, deformation. In these works, studying sensors with intelligent function TEDS was implemented. The operation principle of the complex lies in the possibility of automated control over the experiment using both real measuring equipment, and only software and computer, as well as based on joint use of hardware and software that provide remote access to the measuring stand.

The main difference in the proposed approach to laboratory trainings, which provide a direct implementation of experiments on real models of devices from fully virtual trainings is that the hardware can be used not only for educational purposes, but also in performing scientific experiments and solving the problems of the industrial sector. The possibility to connect real sensors or measuring channel outputs instead of signal simulators to a breadboard, as well as software flexibility provides a wide application range of experimental stand in conducting the research works.

Author Biographies

Владислав Дмитрович Ціделко, National Technical University of Ukraine “Kyiv Polytechnic University” Prospect Peremogy, 37, Kyiv, Ukraine, 03056

Professor

Department of Measurement Devices

Микола Володимирович Чеховой, National Technical University of Ukraine “Kyiv Polytechnic University” Prospect Peremogy, 37, Kyiv, Ukraine, 03056

Taching assistant

Department of Measurement Devices

Ольга Геннадіївна Кисельова, National Technical University of Ukraine “Kyiv Polytechnic University” Prospect Peremogy, 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Biosafety and Reparative Bioengineering

Анна Олегівна Матвійчук, National Technical University of Ukraine “Kyiv Polytechnic University” Prospect Peremogy, 37, Kyiv, Ukraine, 03056

Teaching assistant

Department of Biomedical Engineering

References

  1. Киселева, О. Автоматизированная замкнутая система для исследования биостабильности материалов с применением средств NI LAВVIEW [Текст] / О. Киселева, Н. Бесчастная // Вестник ХПИ. – 2011. – № 2. – С. 137–144.
  2. Кудрин, А. В. Использование программной среды LABVIEW для автоматизации проведения физических экспериментов [Электронный ресурс] : Эл. уч.-метод. пос. / А. В. Кудрин // Нижний Новгород: Нижегородский госуниверситет, 2014. – 68 с. – Режим доступа: http://www.unn.ru/books/met_files/Kudrin%20LabView.pdf.
  3. Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе LabVIEW [Текст] / Под. ред. П. А. Бутырина. – М.: ДМК Пресс, 2005. – 264 с.
  4. Garg, A., Computer assisted magnetism studies [Text] / A. Garg, R. Garg, V. Dhingra // Lat. Am. J. Phys. Educ. – 2010. – Vol.4 (3). – P. 523–528.
  5. Salzmann, C. H. Introduction to Real-time Control using LabVIEW with an Application to Distance Learning [Text] / C. H. Salzmann, D. Gillet, P. Huguenin // International Journal of Engineering Education. – 2000. – Vol. 16 (3). – P. 1–18.
  6. Евдокимов, Ю. К. LabVIEW для радиоинженера: от виртуальной модели до реального прибора [Текст] / Ю. К. Евдокимов, В. Р. Линдваль, Г. И. Щербаков. – М.: ДМК Пресс, 2007. – 400 с.
  7. Опис стандартів IEEE 1451 для інтелектуальних вимірювальних перетворювачів [Електронний ресурс] / Режим доступу: http://ieee1451.nist.gov/.
  8. Опис плати збору даних National Instruments PCI-6221 [Електронний ресурс] / Режим доступу: http://sine.ni.com/nips/cds/view/p/lang/ru/nid/14132.
  9. Опис макетної плати Freescale Semicomductor PBMCUSLK [Електронний ресурс] / Режим доступу: http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PBMCUSLK .
  10. Опис термопар [Електронний ресурс] / Режим доступу: http://radioradar.net/hand_book/documentation/terpara.html.
  11. Патрахин, В. А. Технология публикации приложений LabVIEW в Internet (WEB Publishing Tool) [Текст] / В. А. Патрахин // ПиКАД. – 2004. – Вип. 2. – С. 28–30.
  12. Опис калібрувальних даних TEDS [Електронний ресурс] / Режим доступу: http://zone.ni.com/devzone/cda/tut/p/id/4043.
  13. Kyseleva, O. (2011). Automated closed system for material’s biostability research using LABVIEW software. Vestnyk KhPY, 2, 137–144.
  14. Kudryn, A. V. (2014). Using LABVIEW environment for automation of physical experiments. Nizhny Novgorod: Nizhny Novgorod State University, 68.
  15. Butyryn, P. A. (2005). Automation of physical researches and experiment. Computer measurements and virtual instruments based on LabVIEW. Moscow: DMK Press, 264.
  16. Garg, A., Sharma, R., Dhingra, V. (2010). Computer assisted magnetism studies. Lat. Am. J. Phys. Educ., 4(3), 523–528.
  17. Salzmann, C. H., Gillet, D. Huguenin, P. (2000). Introduction to Real-time Control using LabVIEW with an Application to Distance Learning. International Journal of Engineering Education, 16 (3), 1–18.
  18. Evdokymov, Yu. K. (2007). LabVIEW for radio engineer from the virtual model to the real device. Moscow: DMK Press, 400.
  19. Opys standartiv IEEE 1451 dlia intelektual’nykh vymiriuval’nykh peretvoriuvachiv. Available at: http://ieee1451.nist.gov/ (accessed 20 April 2014).
  20. Opys platy zboru danykh National Instruments PCI-6221. Available at: http://sine.ni.com/nips/cds/view/p/lang/ru/nid/14132 (accessed 20 April 2014).
  21. Opys maketnoi platy Freescale Semicomductor PBMCUSLK. Available at: http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PBMCUSLK (accessed 20 April 2014).
  22. Opys termopar. Available at: http://radioradar.net/hand_book/documentation/terpara.html (accessed 20 April 2014).
  23. Patrahin, V. A. (2004). Technology of the application publishing in Internet using LabVIEW (WEB Publishing Tool). PiKAD, 2, 28–30.
  24. Opys kalibruval’nykh danykh TEDS. Available at: http://zone.ni.com/devzone/cda/tut/p/id/4043 (accessed 20 April 2014).

Published

2014-06-26

How to Cite

Ціделко, В. Д., Чеховой, М. В., Кисельова, О. Г., & Матвійчук, А. О. (2014). Innovative technologies in the laboratory training on the course “Information-measuring complexes”. Eastern-European Journal of Enterprise Technologies, 3(9(69), 47–50. https://doi.org/10.15587/1729-4061.2014.23939

Issue

Section

Information and controlling system