Multifunctional fiber-optic sensors for space infrastructure

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.242995

Keywords:

fiber-optic sensor, photodiode, laser light-emitting diode, Bragg grating, combined

Abstract

Sensors used in rocket and space technology are subject to extreme external influences in terms of temperature, vibration, and shock. Therefore, the choice of the type of sensors is justified precisely by the resistance to such factors, as well as the ability to ensure the temporal and parametric stability of measurements. A new type of sensors – fiber-optic ones – meets these conditions. The basis for the selection and further improvement of such sensors were such requirements as minimum power consumption, high accuracy and stability of measurements, the ability to combine several measurements in one sensor. It is noted that for space infrastructure the factor of the possibility of simultaneous measurement of several parameters with one sensor is one of the important quality indicators. This is due to the possibility of reducing the number of sensors themselves, which reduces the mass and size parameters of space technology. This applies, first of all, to measurements of pressure and temperature, since they, in aggregate, account for at least 40 % of all measurements in space products. The path of choos-ing the types of methods and sensor designs led to the combination of the amplitude conversion method and optical communication in one sensor. In this case, amplitude modulation of pressure and temperature is carried out by a microelec-tromechanical unit (module), and the modulated optical signal is transmitted by an optical module. Such a modular composition of the sensor makes it possible to dispense with optical ana-lyzers (interrogators) and carry out further pro-cessing based on standard interfaces. A limitation of the proposed methods and designs is the need for microelectromechanical structures that measure certain physical quantities. Such structures for fiber-optic sensors are not mass-produced; therefore, their manufacture can be established at instrument-making enterprises with microelectronic equipment

Author Biographies

Petr Mikhailov, Penza State Technological University

Doctor of Technical Sciences, Professor, Leading Researcher

Department of Scientific Research

Zhomart Ualiyev, Satbayev University

PhD, Head of Department

Department of High Mathematics

Assem Kabdoldina, Al-Farabi Kazakh National University

PhD, Senior Lecturer

Department of Chemical Physics and Material Science

Nurzhigit Smailov, Satbayev University

PhD, Associate Professor

Department of Electronics, Telecommunications and Space Technologies

Askar Khikmetov, International Information Technology University

PhD, Rector

Feruza Malikova, Almaty Technological University

PhD, Head of Department

Department of Information Technology

References

  1. Dasgupta, S., Hayes, J. R., Richardson, D. J. (2014). Leakage channel fibers with microstuctured cladding elements: A unique LMA platform. Optics Express, 22 (7), 8574. doi: https://doi.org/10.1364/oe.22.008574
  2. Udd, E. (Ed.) (2008). Volokonno-opticheskie datchiki. Vvodniy kurs dlya inzhenerov i nauchnyh rabotnikov. Moscow: Tehnosfera, 520.
  3. Balogun, O., Regez, B., Krishnaswamy, S. (2009). Dynamic demodulation of spectral shifts in fiber-Bragg-grating sensors. SPIE Newsroom. doi: https://doi.org/10.1117/2.1200911.1857
  4. Kelleher, P., Nikogosyan, D. N. (2010). Inscription of narrow-band fibre Bragg gratings with 264nm femtosecond pulses. Optical Fiber Technology, 16 (4), 212–216. doi: https://doi.org/10.1016/j.yofte.2010.04.002
  5. Tenderenda, T., Murawski, M., Szymanski, M., Becker, M., Rothhardt, M., Bartelt, H. et. al. (2012). Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors. Microstructured and Specialty Optical Fibres. doi: https://doi.org/10.1117/12.922556
  6. Cipullo, A., Gruca, G., Heeck, K., De Filippis, F., Iannuzzi, D., Minardo, A., Zeni, L. (2012). Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results. Sensors and Actuators A: Physical, 178, 17–25. doi: https://doi.org/10.1016/j.sna.2012.01.044
  7. Fang, X., He, X. Y., Liao, C. R., Yang, M., Wang, D. N., Wang, Y. (2010). A new method for sampled fiber Bragg grating fabrication by use of both femtosecond laser and CO_2 laser. Optics Express, 18 (3), 2646. doi: https://doi.org/10.1364/oe.18.002646
  8. Shilova, I. V., Belskaya, О. А., Sotsky, А. B. (2013). Electrodynamic model of the bending fiber-optic sensor. Problems of Physics, Mathematics and Technics, 1 (14), 43–47. Available at: http://www.mathnet.ru/links/04f7404cdfe9fec2edad4b08c79e9200/pfmt220.pdf
  9. Mikhailov, P., Ualiyev, Z. (2020). Sensor stability assurance problems and their relationship with the overall problems of providing system performance quality. MATEC Web of Conferences, 329, 03032. doi: https://doi.org/10.1051/matecconf/202032903032
  10. Roriz, P., Frazão, O., Lobo-Ribeiro, A. B., Santos, J. L., Simões, J. A. (2013). Review of fiber-optic pressure sensors for biomedical and biomechanical applications. Journal of Biomedical Optics, 18 (5), 050903. doi: https://doi.org/10.1117/1.jbo.18.5.050903
  11. Kotiuk, A.F. (2006). Datchiki v sovremennykh izmereniiakh. Moscow: Radio i sviaz Telekom, 96.
  12. Varzhel', S. V. (2015). Volokonnye breggovskie reshetki. Sankt-Peterburg: Universitet ITMO, 65. Available at: https://books.ifmo.ru/file/pdf/1762.pdf
  13. Belikin, M. N. (2016). Bystrodeistvuiuschee malogabaritnoe ustroistvo registratsii spektralnogo otklika dlia volokonnoopticheskikh datchikov na breggovskikh reshetkakh. Saint Petersburg, 14.
  14. Shachneva, E. A. (2021). Volokonno-opticheskie informacionno-izmeritel'nye sistemy parametrov zhidkostnyh potokov. Penza, 222. Available at: https://dissov.pnzgu.ru/files/dissov.pnzgu.ru/2021/shachneva/dissertaciya_shachnevoy_e_a_.pdf
  15. Shroeder, R. Dzh., Udd, E. (1997). Pat. No. 2205374 RU. Fiber-optic pressure transducers and pressure measurement system including thеm. No. 2000102711/28; declareted: 02.07.1998; published: 27.05.2003. Available at: https://patentimages.storage.googleapis.com/cf/4c/10/87b1c0c1c2daca/RU2205374C2.pdf
  16. Tsaplin, A. I., Repin, V. N., Repin, M. V., Aksenov, R. A., Ermakov, N. A. (2004). Pat. No. 2269755 RU. Fiber-optic pressure sensor. No. 2004120829/28; declareted: 07.07.2004; published: 10.02.2006. Available at: http://www.freepatent.ru/images/patents/200/2269755/patent-2269755.pdf
  17. Stoesh, K. U., Boyd, K. D. (2011). Pat. No. 2473874 RU. Distributed optical pressure and temperature sensors. No. 2011103240/28; declareted: 29.06.2009; published: 27.01.2013. Available at: https://patentimages.storage.googleapis.com/32/d3/52/3979afb77d322a/RU2473874C2.pdf
  18. Pat. No. 230588 RU. Volokonno-opticheskiy datchik davleniya.
  19. Gulyaev, Yu. V., Nikitov, S. A., Potapov, V. T., Chamorovskiy, Yu. K. (2005). Volokonno-opticheskie tehnologii, ustroystva, datchiki i sistemy. Foton-Ekspress, 6, 114–127.
  20. Murashkina, T. I., Motin, A. V., Chukareva, M. M., Torgashin, S. I. (2018). Technology of fabrication of sensitive element of the differential fiber-optic acceleration sensor. Measuring. Monitoring. Management. Control, 1 (23), 38–44. doi: http://doi.org/10.21685/2307-5538-2018-1-6

Downloads

Published

2021-10-31

How to Cite

Mikhailov, P., Ualiyev, Z., Kabdoldina, A. ., Smailov, N., Khikmetov, A., & Malikova, F. (2021). Multifunctional fiber-optic sensors for space infrastructure. Eastern-European Journal of Enterprise Technologies, 5(5 (113), 80–89. https://doi.org/10.15587/1729-4061.2021.242995

Issue

Section

Applied physics