Determining the dynamic characteristics of elastic shell structures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.245885

Keywords:

phase-frequency characteristics (PFC), amplitude-frequency characteristics (AFC), shell elastic elements (SEE), boundary conditions, geometric parameters

Abstract

Building structures are very often operated under the action of dynamic loads, both natural and man-made. The calculation of structures under the influence of static loads has been quite widely studied in detail. When structures are exposed to dynamic loads, additional tests are carried out, where measuring instruments are installed on the structures to register stresses and deformations that occur during dynamic influences. Elastic elements are the responsible functional unit of many measuring instruments. Therefore, the quality of elastic elements ensures the operational stability of the entire structure. This determines the increased attention that is paid to technology and construction to elastic elements. Previously, the work of elastic elements made of homogeneous mono materials with the same physical and geometric properties in all directions and over the entire surface of the element was studied.

The elastic element was considered as a shell of rotation with a complex shape of the meridian and various physical and mechanical properties at various points caused by uneven reinforcement. Two types of reinforcement were implied ‒ radial and circular. Elastic shell elements (ESE) operate under conditions of dynamic loading. The equation was derived for determining the dynamic characteristics of inhomogeneous elastic elements. The dependences of the first three natural frequencies of oscillations on the thickness of the shell and the depth of the corrugation and the first two natural frequencies of oscillations on the thickness of the shell have been analyzed. The amplitude-frequency characteristics (AFC) and the phase-frequency characteristics (PFC) of the shell depending on the geometric parameters have been calculated. All these results could significantly improve the quality of the readings of the instruments, which depend on the sensitivity of the shell elastic elements. And it, in turn, depends on the geometric and physical properties of the shell elastic elements.

Author Biographies

Irina Polyakova, Kazakh Leading Academy of Architecture and Civil Engineering

PhD

Faculty of General Construction

Raikhan Imambayeva, Kazakh Leading Academy of Architecture and Civil Engineering

PhD

Faculty of General Construction

Bakyt Aubakirova, Kazakh Leading Academy of Architecture and Civil Engineering

PhD

Faculty of General Construction

References

  1. Alfutov, N. A., Zinov'ev, P. A., Popov, B. (2009). Raschet mnogosloynyh plastin i obolochek iz kompozicionnyh materialov. Moscow: Mashinostroenie, 263. Available at: https://www.studmed.ru/alfutov-na-zinovev-pa-popov-bg-raschet-mnogosloynyh-plastin-i-obolochek-iz-kompozicionnyh-materialov_a4d2eb5991d.html
  2. Andreeva, L. E. (1962). Uprugie elementy priborov. Moscow: Mir knig, 462. Available at: https://xn--c1ajahiit.ws/knigi/nehudozhestvennye/nauka-i-texnika/163629-andreeva-l-e-uprugie-elementy-priborov.html
  3. Shimyrbaev, M. K. (1992). Utochnennye metody opredeleniya uprugih postoyannyh odnonapravlenno armirovannogo materiala. Alma-Ata, 14.
  4. Kurochka, K. S., Stefanovskiy, I. L. (2014). Raschet mnogosloynyh osesimmetrichnyh obolochek metodom konechnyh elementov. Informacionnye tehnologii i sistemy 2014 (ITS 2014): materialy mezhdunarodnoy nauchnoy konferencii. Minsk, 214–215. Available at: https://libeldoc.bsuir.by/bitstream/123456789/2008/2/%d0%a0%d0%b0%d1%81%d1%87%d0%b5%d1%82%20%d0%bc%d0%bd%d0%be%d0%b3%d0%be%d1%81%d0%bb%d0%be%d0%b9%d0%bd%d1%8b%d0%b9%20%d0%be%d1%81%d0%b5%d1%81%d0%b8%d0%bc%d0%bc%d0%b5%d1%82%d1%80%d0%b8%d1%87%d0%bd%d1%8b%d1%85%20%d0%be%d0%b1%d0%be%d0%bb%d0%be%d1%87%d0%b5%d0%ba.PDF
  5. Golova, T. A., Andreeva, N. V. (2019). Analysis of methods of calculation of layered plates and shells for the calculation of multilayer structures. The Eurasian Scientific Journal, 5. Available at: https://esj.today/PDF/41SAVN519.pdf
  6. Bazhenov, V. A., Solovei, N. A., Krivenko, O. P., Mishchenko, O. A. (2014). Modeling of nonlinear deformation and buckling of elastic inhomogeneities shells. Stroitel'naya mehanika inzhenernyh konstrukciy i sooruzheniy, 5, 14–33. Available at: https://cyberleninka.ru/article/n/modelirovanie-nelineynogo-deformirovaniya-i-poteri-ustoychivosti-uprugih-neodnorodnyh-obolochek
  7. Kairov, A. S., Vlasov, O. I., Latanskaya, L. A. (2017). Free vibrations of constructional non-homogeneous multilayer orthotropic composite cylindrical shells. Visnyk Zaporizkoho natsionalnoho universytetu. Fizyko-materatychni nauky, 2, 57–65. Available at: http://eir.nuos.edu.ua/xmlui/bitstream/handle/123456789/4559/Kairov%205.pdf?sequence=1&isAllowed=y
  8. San’kov, P., Tkach, N., Voziian, K., Lukianenko, V. (2016). Composite building materials and products. International scientific journal, 4 (1), 80–82. Available at: http://nbuv.gov.ua/UJRN/mnj_2016_4(1)__24
  9. Marasulov, А., Safarov, I. I., Abdraimova, G. A., Tolep, A. S. (2021). Own vibrations of ribbed truncated conical shell. Vestnik KazNRTU, 143 (3), 211–221. doi: https://doi.org/10.51301/vest.su.2021.i3.28
  10. Potapov, A. N. (2018). About the free-vibration mode shapes of elastoplastic dissipative systems. International Journal for Computational Civil and Structural Engineering, 14 (3), 114–125. doi: https://doi.org/10.22337/2587-9618-2018-14-3-114-125
  11. Yankovskii, A. P. (2020). The Refined Model of Viscoelastic-Plastic Deformation of Reinforced Cylindrical Shells. PNRPU Mechanics Bulletin, 1, 138–149. doi: https://doi.org/10.15593/perm.mech/2020.1.11
  12. Bakulin, V. N. (2019). Posloyniy analiz napryazhenno-deformirovannogo sostoyaniya trehsloynyh obolochek s vyrezami. Izvestiya Rossiyskoy Akademii Nauk. Mehanika Tverdogo Tela, 2, 111–125. doi: https://doi.org/10.1134/s0572329919020028
  13. Senjanović, I., Čakmak, D., Alujević, N., Ćatipović, I., Vladimir, N., Cho, D.-S. (2019). Pressure and rotation induced tensional forces of toroidal shell and their influence on natural vibrations. Mechanics Research Communications, 96, 1–6. doi: https://doi.org/10.1016/j.mechrescom.2019.02.003
  14. Bazhenov, V. A., Luk’yanchenko, O. A., Vorona, Y. V., Kostina, E. V. (2018). Stability of the Parametric Vibrations of a Shell in the Form of a Hyperbolic Paraboloid. International Applied Mechanics, 54 (3), 274–286. doi: https://doi.org/10.1007/s10778-018-0880-4
  15. Ajarmah, B., Shitikova, M. (2019). Numerical analysis of nonlinear forced vibrations of a cylindrical shell with combinational internal resonance in a fractional viscoelastic medium. IOP Conference Series: Materials Science and Engineering, 489, 012033. doi: https://doi.org/10.1088/1757-899x/489/1/012033
  16. Yang, S. W., Zhang, W., Mao, J. J. (2019). Nonlinear vibrations of carbon fiber reinforced polymer laminated cylindrical shell under non-normal boundary conditions with 1:2 internal resonance. European Journal of Mechanics - A/Solids, 74, 317–336. doi: https://doi.org/10.1016/j.euromechsol.2018.11.014
  17. Lugovoi, P. Z., Sirenko, V. N., Prokopenko, N. Y., Klimenko, K. V. (2017). Influence of the Parameters of a Non-Constant Disturbing Load on the Transient Process of Vibrations of a Ribbed Cylindrical Shell. International Applied Mechanics, 53 (6), 680–687. doi: https://doi.org/10.1007/s10778-018-0850-x
  18. Tornabene, F., Fantuzzi, N., Bacciocchi, M. (2017). A new doubly-curved shell element for the free vibrations of arbitrarily shaped laminated structures based on Weak Formulation IsoGeometric Analysis. Composite Structures, 171, 429–461. doi: https://doi.org/10.1016/j.compstruct.2017.03.055

Downloads

Published

2021-12-21

How to Cite

Polyakova, I., Imambayeva, R., & Aubakirova, B. (2021). Determining the dynamic characteristics of elastic shell structures. Eastern-European Journal of Enterprise Technologies, 6(7 (114), 43–51. https://doi.org/10.15587/1729-4061.2021.245885

Issue

Section

Applied mechanics