Construction of a mathematical model of the film absorber for sulfating two-component mixtures of organic substances
DOI:
https://doi.org/10.15587/1729-4061.2021.246612Keywords:
mathematical model, process of sulfation, film absorber, surfactant, two-component mixtureAbstract
The processes that occur in film absorbers during the sulfation of two-component mixtures of organic substances are quite complex and require mathematical modeling. This paper reports the construction of a mathematical model that makes it possible to adequately describe the process of sulfation involving gaseous sulfur trioxide in the production of surfactants. Based on the model, it became possible to investigate this process for higher alcohols of fractions С12–С14 and monoethanolamides of higher fatty acids of coconut oil.
The data are given on the comparison of mathematical modeling results based on the mathematical model built with known experimental data and results of alternative mathematical modeling for different ratios of the length of the reaction pipe to its diameter (l/d). It is shown that the error in comparing the experimental data was 4.8–9.6 % at l l/d=29; 1.1–8.7 % at l/d=70; 3.9–12.3 % at l/d=144. The error in comparing known results of alternative mathematical modeling was, respectively, 6.3–7.2 %, 0.1–6.5 %, 0–1.0 %. These results were obtained for the molar ratio in the range of 1.0–1.15 and the SO3 concentration in the stream of 4.0–6.0 %.
Such findings suggest that the established dependences of the basic parameters for the sulfation process are adequate in terms of the absorber length and its radial direction. Therefore, the mathematical model built does hold within the considered ranges of input variables. Consequently, it could be used in the theoretical study of the process of sulfation of two-component mixtures of organic substances by gaseous sulfur trioxide in a film absorber with a downward flow of phases. The results obtained could be used in practice, in particular in the manufacture of high-quality products for the cosmetic industry.
References
- Tananayko, Yu. M., Vorontsov, E. G. (1975). Metody rascheta i issledovaniya plenochnyh protsessov. Kyiv: Tekhnika, 312.
- Timmermans, R. C. V. (2017). Falling Film Reactor. Available at: https://documents.pub/document/falling-film-the-main-conclusion-of-this-research-is-that-the-concept-of-the-falling.html
- Russo, V., Milicia, A., Di Serio, M., Tesser, R. (2019). Falling film reactor modelling for sulfonation reactions. Chemical Engineering Journal, 377, 120464. doi: https://doi.org/10.1016/j.cej.2018.11.162
- Sheverdyaev, O. N., Belov, P. S., Shkitov, A. M. (2001). Osnovy tekhnologii poverhnostno-aktivnyh veschestv i sinteticheskih moyuschih sredstv. Moscow: MGOU, 201.
- Dzevochko, O. M., Podustov, M. O. (2018). Research of the process of sulfathing organic substances by gaseous sulfur trayoxide. Intehrovani tekhnolohiyi ta enerhozberezhennia, 2, 50–55. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/41212/1/ITE_2018_2_Dzevochko_Doslidzhennia_protsesu.pdf
- Adami, I. (2004). Design Criteria, Mechanical Features, Advantages and Performances of Multitube Falling Film Sulphonation Reactor. Tenside Surfactants Detergents, 41 (5), 240–245. doi: https://doi.org/10.3139/113.100230
- Narváez, P. C., Sánchez, F. J., Godoy-Silva, R. D. (2009). Continuous Methanolysis of Palm Oil Using a Liquid–Liquid Film Reactor. Journal of the American Oil Chemists’ Society, 86 (4), 343–352. doi: https://doi.org/10.1007/s11746-009-1356-9
- Xu, Z. F., Khoo, B. C., Wijeysundera, N. E. (2008). Mass transfer across the falling film: Simulations and experiments. Chemical Engineering Science, 63 (9), 2559–2575. doi: https://doi.org/10.1016/j.ces.2008.02.014
- Foster, N. C. (1997). Sulfonation and Sulfation. The Chemithon Corporation, 36. Available at: https://docplayer.net/29344190-Sulfonation-and-sulfation-processes-norman-c-foster-ph-d-p-e.html
- Johnson, G. R., Crynes, B. L. (1974). Modeling of a Thin-Film Sulfur Trioxide Sulfonation Reactor. Industrial & Engineering Chemistry Process Design and Development, 13 (1), 6–14. doi: https://doi.org/10.1021/i260049a002
- James Davis, E., Van Ouwerkerk, M., Venkatesh, S. (1979). An analysis of the falling film gas-liquid reactor. Chemical Engineering Science, 34 (4), 539–550. doi: https://doi.org/10.1016/0009-2509(79)85099-x
- Gutierrez-Gonzalez, J., Mans-Teixido, C., Costa-Lopez, J. (1988). Improved mathematical model for a falling film sulfonation reactor. Industrial & Engineering Chemistry Research, 27 (9), 1701–1707. doi: https://doi.org/10.1021/ie00081a023
- Dabir, B., Riazi, M. R., Davoudirad, H. R. (1996). Modelling of falling film reactors. Chemical Engineering Science, 51 (11), 2553–2558. doi: https://doi.org/10.1016/0009-2509(96)00113-3
- Talens-Alesson, F. I. (1999). The modelling of falling film chemical reactors. Chemical Engineering Science, 54 (12), 1871–1881. doi: https://doi.org/10.1016/s0009-2509(98)00497-7
- Akanksha, Pant, K. K., Srivastava, V. K. (2007). Modeling of sulphonation of tridecylbenzene in a falling film reactor. Mathematical and Computer Modelling, 46 (9-10), 1332–1344. doi: https://doi.org/10.1016/j.mcm.2007.01.007
- Torres Ortega, J. A., Morales Medina, G., Suárez Palacios, O. Y., Sánchez Castellanos, F. J. (2009). Mathematical Model of a Falling Film Reactor for Methyl Ester Sulfonation. Chemical Product and Process Modeling, 4 (5). doi: https://doi.org/10.2202/1934-2659.1393
- Torres Ortega, J. A., Díaz Aldana, L. A., Sánchez Castellanos, F. J. (2009). Falling film reactor for methyl ester sulphonation with gaseous sulphur trioxide. Ingeniería e Investigación, 29 (3), 48–53. Available at: https://revistas.unal.edu.co/index.php/ingeinv/article/view/15182/15976
- Torres Ortega, J. A. (2012). Sulfonation/Sulfation Processing Technology for Anionic Surfactant Manufacture. Advances in Chemical Engineering. doi: https://doi.org/10.5772/32077
- Podustov, M. O., Dzevochko, A. I., Lysachenko, I. H., Dzevochko, O. M. (2017). Analysis of the sulfathing process in a tubular film reactor by method of mathematical modeling. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriya: Khimiya, khimichna tekhnolohiya ta ekolohiya, 49, 60–65. Available at: http://nbuv.gov.ua/UJRN/vcpixx_2017_49_12
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Oleksandr Dzevochko, Mykhaylo Podustov, Alona Dzevochko, Vladimir Panasenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.