The determination of synthesis conditions and color properties of pigments based on layered double hydroxides with Co as a guest cation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.247160

Keywords:

Zn-Co layered double hydroxide, pigment, Cu-Co layered double hydroxide, oxidation, hypochlorite

Abstract

Nail polish, in particular gel polish, is the most commonly used cosmetic product. A component of the gel polish, which determines the consumer color characteristics of the gel polish. Layered double hydroxides (LDH) are promising pigments. To expand the range of colors and shades of pigments, the use of LDH with colored host and guest cations is promising. The parameters of synthesis and color characteristics of samples of Zn-Co and Cu-Co hydroxide pigments were studied. To obtain LDH with Co as a guest cation in the synthesis, the conversion of cobalt to the trivalent state was carried out at a temperature of 80 °C using oxidation with atmospheric oxygen or sodium hypochlorite. The oxidation efficiency was evaluated by X-ray phase analysis by the presence or absence of cobalt-containing phases. The color characteristics of the synthesized pigment samples were studied by spectroscopic measurement and calculation in RGB, CIELab, and LCH color models.

The low efficiency of cobalt oxidation at the moment of Zn-Co LDH synthesis with atmospheric oxygen at an elevated synthesis temperature of 80 °C was shown, while cobalt was released as a separate Co3O4 phase. A higher efficiency of cobalt oxidation at the moment of synthesis using sodium hypochlorite with the formation of Zn-Co LDH was revealed. It is recommended to use the hypochlorite oxidation of Co2+ to Co3+ in the LDH synthesis with Co in the form of a guest cation. The formation of a separate phase of zinc oxide was found in both types of oxidation due to the thermal decomposition of zinc hydroxide.

Comparative analysis of color characteristics showed that all samples have a brown color of different saturation. It was revealed that during the formation of Co-containing LDH, the lightness of the color decreases. Color saturation increases in the case of a colored host cation, such as Cu.

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Analytical Chemistry and Chemical Technology of Food Additives and Cosmetics

Valerii Kotok, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

References

  1. Drahl, C. (2008). Nail Polish. Chemical & Engineering News Archive, 86 (32), 42. doi: https://doi.org/10.1021/cen-v086n032.p042
  2. Zaichuk, A. V., Amelina, A. A. (2018). Blue-green ceramic pigments in the system CaO–MgO–Al2O3–SiO2–CoO–Cr2O3 based on granulated blast-furnace slag. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 120–124. doi: https://doi.org/10.32434/0321-4095-2018-121-6-120-124
  3. Zaichuk, A. V., Belyi, Y. I. (2012). Brown ceramic pigments based on open-hearth slag. Russian Journal of Applied Chemistry, 85 (10), 1531–1535. doi: https://doi.org/10.1134/s1070427212100072
  4. Zaichuk, A. V., Belyi, Y. I. (2012). Black ceramic pigments based on open-hearth slag. Glass and Ceramics, 69 (3-4), 99–103. doi: https://doi.org/10.1007/s10717-012-9423-3
  5. Zaychuk, A., Iovleva, J. (2013). The Study of Ceramic Pigments of Spinel Type with the Use of Slag of Aluminothermal Production of Ferrotitanium. Chemistry & Chemical Technology, 7 (2), 217–225. doi: https://doi.org/10.23939/chcht07.02.217
  6. Zaichuk, A. V., Belyi, Y. I. (2013). Improvement of the Compositions and Properties of Gray Ceramic Pigments. Glass and Ceramics, 70 (5-6), 229–233. doi: https://doi.org/10.1007/s10717-013-9550-5
  7. Zaichuk, A. V., Amelina, A. A. (2017). Production of Uvarovite Ceramic Pigments Using Granulated Blast-Furnace Slag. Glass and Ceramics, 74 (3-4), 99–103. doi: https://doi.org/10.1007/s10717-017-9937-9
  8. Khan, A. I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T. G. et. al. (2009). Recent Developments in the Use of Layered Double Hydroxides as Host Materials for the Storage and Triggered Release of Functional Anions. Industrial & Engineering Chemistry Research, 48 (23), 10196–10205. doi: https://doi.org/10.1021/ie9012612
  9. Mandal, S., Tichit, D., Lerner, D. A., Marcotte, N. (2009). Azoic Dye Hosted in Layered Double Hydroxide: Physicochemical Characterization of the Intercalated Materials. Langmuir, 25 (18), 10980–10986. doi: https://doi.org/10.1021/la901201s
  10. Mandal, S., Lerner, D. A., Marcotte, N., Tichit, D. (2009). Structural characterization of azoic dye hosted layered double hydroxides. Zeitschrift Für Kristallographie, 224 (5-6), 282–286. doi: https://doi.org/10.1524/zkri.2009.1150
  11. Wang, Q., Feng, Y., Feng, J., Li, D. (2011). Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. Journal of Solid State Chemistry, 184 (6), 1551–1555. doi: https://doi.org/10.1016/j.jssc.2011.04.020
  12. Liu, J. Q., Zhang, X. C., Hou, W. G., Dai, Y. Y., Xiao, H., Yan, S. S. (2009). Synthesis and Characterization of Methyl-Red/Layered Double Hydroxide (LDH) Nanocomposite. Advanced Materials Research, 79-82, 493–496. doi: https://doi.org/10.4028/www.scientific.net/amr.79-82.493
  13. Tian, Y., Wang, G., Li, F., Evans, D. G. (2007). Synthesis and thermo-optical stability of o-methyl red-intercalated Ni–Fe layered double hydroxide material. Materials Letters, 61 (8-9), 1662–1666. doi: https://doi.org/10.1016/j.matlet.2006.07.094
  14. Hwang, S.-H., Jung, S.-C., Yoon, S.-M., Kim, D.-K. (2008). Preparation and characterization of dye-intercalated Zn–Al-layered double hydroxide and its surface modification by silica coating. Journal of Physics and Chemistry of Solids, 69 (5-6), 1061–1065. doi: https://doi.org/10.1016/j.jpcs.2007.11.002
  15. Tang, P., Deng, F., Feng, Y., Li, D. (2012). Mordant Yellow 3 Anions Intercalated Layered Double Hydroxides: Preparation, Thermo- and Photostability. Industrial & Engineering Chemistry Research, 51 (32), 10542–10545. doi: https://doi.org/10.1021/ie300645b
  16. Tang, P., Feng, Y., Li, D. (2011). Fabrication and properties of Acid Yellow 49 dye-intercalated layered double hydroxides film on an alumina-coated aluminum substrate. Dyes and Pigments, 91 (2), 120–125. doi: https://doi.org/10.1016/j.dyepig.2011.03.012
  17. Tang, P., Feng, Y., Li, D. (2011). Improved thermal and photostability of an anthraquinone dye by intercalation in a zinc–aluminum layered double hydroxides host. Dyes and Pigments, 90 (3), 253–258. doi: https://doi.org/10.1016/j.dyepig.2011.01.007
  18. Shamim, M., Dana, K. (2017). Efficient removal of Evans blue dye by Zn–Al–NO3 layered double hydroxide. International Journal of Environmental Science and Technology, 15 (6), 1275–1284. doi: https://doi.org/10.1007/s13762-017-1478-9
  19. Mahjoubi, F. Z., Khalidi, A., Abdennouri, M., Barka, N. (2017). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties. Journal of Taibah University for Science, 11 (1), 90–100. doi: https://doi.org/10.1016/j.jtusci.2015.10.007
  20. Pahalagedara, M. N., Samaraweera, M., Dharmarathna, S., Kuo, C.-H., Pahalagedara, L. R., Gascón, J. A., Suib, S. L. (2014). Removal of Azo Dyes: Intercalation into Sonochemically Synthesized NiAl Layered Double Hydroxide. The Journal of Physical Chemistry C, 118 (31), 17801–17809. doi: https://doi.org/10.1021/jp505260a
  21. Darmograi, G., Prelot, B., Layrac, G., Tichit, D., Martin-Gassin, G., Salles, F., Zajac, J. (2015). Study of Adsorption and Intercalation of Orange-Type Dyes into Mg–Al Layered Double Hydroxide. The Journal of Physical Chemistry C, 119 (41), 23388–23397. doi: https://doi.org/10.1021/acs.jpcc.5b05510
  22. Marangoni, R., Bouhent, M., Taviot-Guého, C., Wypych, F., Leroux, F. (2009). Zn2Al layered double hydroxides intercalated and adsorbed with anionic blue dyes: A physico-chemical characterization. Journal of Colloid and Interface Science, 333 (1), 120–127. doi: https://doi.org/10.1016/j.jcis.2009.02.001
  23. El Hassani, K., Beakou, B. H., Kalnina, D., Oukani, E., Anouar, A. (2017). Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange: A comparative study. Applied Clay Science, 140, 124–131. doi: https://doi.org/10.1016/j.clay.2017.02.010
  24. Abdellaoui, K., Pavlovic, I., Bouhent, M., Benhamou, A., Barriga, C. (2017). A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Applied Clay Science, 143, 142–150. doi: https://doi.org/10.1016/j.clay.2017.03.019
  25. Santos, R. M. M. dos, Gonçalves, R. G. L., Constantino, V. R. L., Santilli, C. V., Borges, P. D., Tronto, J., Pinto, F. G. (2017). Adsorption of Acid Yellow 42 dye on calcined layered double hydroxide: Effect of time, concentration, pH and temperature. Applied Clay Science, 140, 132–139. doi: https://doi.org/10.1016/j.clay.2017.02.005
  26. Bharali, D., Deka, R. C. (2017). Adsorptive removal of congo red from aqueous solution by sonochemically synthesized NiAl layered double hydroxide. Journal of Environmental Chemical Engineering, 5 (2), 2056–2067. doi: https://doi.org/10.1016/j.jece.2017.04.012
  27. Ahmed, M. A., brick, A. A., Mohamed, A. A. (2017). An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Chemosphere, 174, 280–288. doi: https://doi.org/10.1016/j.chemosphere.2017.01.147
  28. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
  29. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
  30. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
  31. Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: https://doi.org/10.15587/1729-4061.2017.90873
  32. Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.169461
  33. Arizaga, G. G. C., Gardolinski, J. E. F. da C., Schreiner, W. H., Wypych, F. (2009). Intercalation of an oxalatooxoniobate complex into layered double hydroxide and layered zinc hydroxide nitrate. Journal of Colloid and Interface Science, 330 (2), 352–358. doi: https://doi.org/10.1016/j.jcis.2008.10.025
  34. Andrade, K. N., Pérez, A. M. P., Arízaga, G. G. C. (2019). Passive and active targeting strategies in hybrid layered double hydroxides nanoparticles for tumor bioimaging and therapy. Applied Clay Science, 181, 105214. doi: https://doi.org/10.1016/j.clay.2019.105214
  35. Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814
  36. Cursino, A. C. T., Rives, V., Arizaga, G. G. C., Trujillano, R., Wypych, F. (2015). Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer. Materials Research Bulletin, 70, 336–342. doi: https://doi.org/10.1016/j.materresbull.2015.04.055
  37. Kovalenko, V., Kotok, V. (2019). “Smart” anti­corrosion pigment based on layered double hydroxide: construction and characterization. Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), 23–30. doi: https://doi.org/10.15587/1729-4061.2019.176690
  38. Carbajal Arízaga, G. G., Sánchez Jiménez, C., Parra Saavedra, K. J., Macías Lamas, A. M., Puebla Pérez, A. M. (2016). Folate‐intercalated layered double hydroxide as a vehicle for cyclophosphamide, a non‐ionic anti‐cancer drug. Micro & Nano Letters, 11 (7), 360–362. doi: https://doi.org/10.1049/mnl.2016.0106
  39. Ghotbi, M. Y., Hussein, M. Z. bin, Yahaya, A. H., Rahman, M. Z. A. (2009). LDH-intercalated d-gluconate: Generation of a new food additive-inorganic nanohybrid compound. Journal of Physics and Chemistry of Solids, 70 (6), 948–954. doi: https://doi.org/10.1016/j.jpcs.2009.05.007
  40. Hong, M.-M., Oh, J.-M., Choy, J.-H. (2008). Encapsulation of Flavor Molecules, 4-Hydroxy-3-Methoxy Benzoic Acid, into Layered Inorganic Nanoparticles for Controlled Release of Flavor. Journal of Nanoscience and Nanotechnology, 8 (10), 5018–5021. doi: https://doi.org/10.1166/jnn.2008.1385
  41. Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68, 267–272.
  42. Delhoyo, C. (2007). Layered double hydroxides and human health: An overview. Applied Clay Science, 36 (1-3), 103–121. doi: https://doi.org/10.1016/j.clay.2006.06.010
  43. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  44. Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  45. Hu, M., Lei, L. (2006). Effects of particle size on the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3. Journal of Solid State Electrochemistry, 11 (6), 847–852. doi: https://doi.org/10.1007/s10008-006-0231-y
  46. Solovov, V. A., Nikolenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. А., Kondrat’ev, D. A. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 13 (24), 9652–9656. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7500.pdf
  47. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
  48. Kovalenko, V., Kotok, V. (2019). Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 58–66. doi: https://doi.org/10.15587/1729-4061.2019.164792
  49. Xiao-yan, G., Jian-cheng, D. (2007). Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 61 (3), 621–625. doi: https://doi.org/10.1016/j.matlet.2006.05.026
  50. Kovalenko, V., Kotok, V., Sykchin, A., Kovalenko, I., Berzenina, O., Stoliarenko, V. et. al. (2020). Investigation of characteristics of binary Ni–Co oxy­hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 1 (12 (103)), 15–23. doi: 10. https://doi.org/10.15587/1729-4061.2020.194618
  51. Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1945-7111/ab9a2a
  52. Saikia, H., Ganguli, J. N. (2012). Intercalation of Azo Dyes in Ni-Al Layered Double Hydroxides. Asian Journal of Chemistry, 24 (12), 5909–5913. Available at: https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=24_12_134
  53. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  54. Kovalenko, V., Kotok, V. (2020). Determination of the applicability of Zn­Al layered double hydroxide, intercalated by food dye Orange Yellow S, as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (107)), 81–89. doi: https://doi.org/10.15587/1729-4061.2020.214847
  55. Kovalenko, V., Kotok, V. (2020). Tartrazine-intercalated Zn–Al layered double hydroxide as a pigment for gel nail polish: synthesis and characterisation. Eastern-European Journal of Enterprise Technologies, 3 (12 (105)), 29–37. doi: https://doi.org/10.15587/1729-4061.2020.205607
  56. Kovalenko, V., Kotok, V. (2020). Bifuctional indigocarmin­intercalated Ni­Al layered double hydroxide: investigation of characteristics for pigment and supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (12 (104)), 30–39. doi: https://doi.org/10.15587/1729-4061.2020.201282
  57. Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764

Downloads

Published

2021-12-21

How to Cite

Kovalenko, V., & Kotok, V. (2021). The determination of synthesis conditions and color properties of pigments based on layered double hydroxides with Co as a guest cation. Eastern-European Journal of Enterprise Technologies, 6(6 (114), 32–38. https://doi.org/10.15587/1729-4061.2021.247160

Issue

Section

Technology organic and inorganic substances