Determining energetic characteristics and selecting environmentally friendly components for solid rocket propellants at the early stages of design

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.247233

Keywords:

highly energetic compositions, environmentally friendly oxidizers, polymer binder, specific impulse

Abstract

This paper has investigated the possibility to theoretically calculate a value of the specific impulse for highly energetic compositions using only two parameters – the heat of the reaction and the number of moles of gaseous decomposition reaction products. Specific impulse is one of the most important energetic characteristics of rocket propellant. It demonstrates the level of achieving the value of engine thrust and propellant utilization efficiency. Determining the specific impulse experimentally is a complex task that requires meeting special conditions. For the stage of synthesis of new promising components, the comparative analysis of energetic characteristics, forecasting the value of specific impulse, especially relevant are calculation methods. Most of these methods were first developed to determine the energetic characteristics of explosives. Since explosives and rocket propellants in many cases have similar energy content and similar chemical composition, some estimation methods can be used to assess the specific impulse of solid rocket propellant.

The specific impulse has been calculated for 45 compositions based on environmentally friendly oxidizers (ammonium dinitramide, hydrazinium nitroformate, hexanitrohexaazaisowurtzitane) and polymer binders polybutadiene with terminal hydroxyl groups, glycidylazide polymer, poly-3-nitratomethyl-3-methyloxetane). It was established that the estimation data obtained correlate well with literary data. Deviation of the derived values of the specific impulse from those reported in the literature is from 0.4 % to 1.8 %. The calculation results could be used for preliminary forecasting of energetic characteristics for highly energetic compositions, selecting the most promising components, as well as their ratios.

Author Biographies

Olena Kositsyna, Oles Honchar Dnipro National University

PhD, Associate Professor

Department of Chemistry and Chemical Technology of Macromolecular Compounds

Kostiantyn Varlan, Oles Honchar Dnipro National University

PhD, Associate Professor, Head of Department

Department of Chemistry and Chemical Technology of Macromolecular Compounds

Mykola Dron, Oles Honchar Dnipro National University

Doctor of Technical Sciences, Professor

Department of Designing and Construction

Oleksii Kulyk, Oles Honchar Dnipro National University

PhD, Associate Professor

Department of Technology of Manufacturing

References

  1. Kositsyna, O. S., Dron’, M. M., Yemets, V. V. (2020). The environmental impact assessment of emission from space launches: the promising propellants components selection. Journal of Chemistry and Technologies, 28 (2), 186–193. doi: https://doi.org/10.15421/082020
  2. Yemets, V., Dron’, M., Yemets, T., Kostritsyn, O. (2015). The Infinite Staging Rocket – A Progress to Realization. IAC-15. Available at: https://iafastro.directory/iac/archive/browse/IAC-15/D2/7/28649/
  3. Yemets, V., Harkness, P., Dron’, M., Pashkov, A., Worrall, K., Middleton, M. (2018). Autophage Engines: Toward a Throttleable Solid Motor. Journal of Spacecraft and Rockets, 55 (4), 984–992. doi: https://doi.org/10.2514/1.a34153
  4. Yemets, M., Yemets, V., Dron’, M., Harkness, P., Worrall, K. (2018). Caseless throttleable solid motor for small spacecraft. IAC-18. Available at: https://iafastro.directory/iac/archive/browse/IAC-18/C4/8-B4.5A/48017/
  5. Yemets, V., Dron’, M., Pashkov, A. (2020). Autophage Engines: Method to Preset Gravity Load of Solid Rockets. Journal of Spacecraft and Rockets, 57 (2), 309–318. doi: https://doi.org/10.2514/1.a34597
  6. Yemets, V. V., Dron’, M. M., Kositsyna, O. S. (2019). Estimation of the possibilities for using the solid hydrocarbon fuels in autophage launch vehicle. Journal of Chemistry and Technologies, 27 (1), 58–64. doi: https://doi.org/10.15421/081906
  7. Yemets, V., Dron, M., Pashkov, A., Dreus, A., Kositsyna, Y., Yemets, M. et. al. (2020). Method to Preset G-load Profile of Launch Vehicles. 71st International Astronautical Congress, IAC 2020. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-85100948613&origin=inward&txGid=45e75f972f792a0effbe94b9a76e7aeb
  8. Gadiot, G. M. H. J. L., Mul, J. M., Meulenbrugge, J. J., Korting, P. A. O. G., Schnorkh, A. J., Schöyer, H. F. R. (1993). New solid propellants based on energetic binders and HNF. Acta Astronautica, 29 (10-11), 771–779. doi: https://doi.org/10.1016/0094-5765(93)90158-s
  9. Trache, D., Klapötke, T. M., Maiz, L., Abd-Elghany, M., DeLuca, L. T. (2017). Recent advances in new oxidizers for solid rocket propulsion. Green Chemistry, 19 (20), 4711–4736. doi: https://doi.org/10.1039/c7gc01928a
  10. Abd-Elghany, M., Klapötke, T. M., Elbeih, A. (2018). Environmentally safe (chlorine-free): new green propellant formulation based on 2,2,2-trinitroethyl-formate and HTPB. RSC Advances, 8 (21), 11771–11777. doi: https://doi.org/10.1039/c8ra01515e
  11. Vellaisamy, U., Biswas, S. (2020). Effect of metal additives on neutralization and characteristics of AP/HTPB solid propellants. Combustion and Flame, 221, 326–337. doi: https://doi.org/10.1016/j.combustflame.2020.08.006
  12. Muthurajan, H., Sivabalan, R., Pon Saravanan, N., Talawar, M. B. (2009). Computer code to predict the heat of explosion of high energy materials. Journal of Hazardous Materials, 161 (2-3), 714–717. doi: https://doi.org/10.1016/j.jhazmat.2008.04.032
  13. Jafari, M., Keshavarz, M. H., Ebadpour, R. (2020). A Simple Approach to Assess the Performance of Non‐ideal Aluminum/Ammonium Perchlorate Composite Explosives as Compared to the Best Available Methods. Zeitschrift Für Anorganische Und Allgemeine Chemie, 646 (17), 1419–1425. doi: https://doi.org/10.1002/zaac.202000269
  14. Muthurajan, H., Sivabalan, R., Talawar, M., Anniyappan, M., Venugopalan, S. (2006). Prediction of heat of formation and related parameters of high energy materials. Journal of Hazardous Materials, 133 (1-3), 30–45. doi: https://doi.org/10.1016/j.jhazmat.2005.10.009
  15. Talawar, M. B., Sivabalan, R., Anniyappan, M., Gore, G. M., Asthana, S. N., Gandhe, B. R. (2007). Emerging trends in advanced high energy materials. Combustion, Explosion, and Shock Waves, 43 (1), 62–72. doi: https://doi.org/10.1007/s10573-007-0010-9
  16. Kumar, P. (2018). An overview on properties, thermal decomposition, and combustion behavior of ADN and ADN based solid propellants. Defence Technology, 14 (6), 661–673. doi: https://doi.org/10.1016/j.dt.2018.03.009
  17. De Flon, J., Andreasson, S., Liljedahl, M., Oscarson, C., Wanhatalo, M., Wingborg, N. (2011). Solid Propellants based on ADN and HTPB. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. doi: https://doi.org/10.2514/6.2011-6136
  18. Cerri, S., Bohn, M. A., Menke, K., Galfetti, L. (2013). Characterization of ADN/GAP-Based and ADN/Desmophen®-Based Propellant Formulations and Comparison with AP Analogues. Propellants, Explosives, Pyrotechnics, 39 (2), 192–204. doi: https://doi.org/10.1002/prep.201300065
  19. Nagamachi, M. Y., Oliveira, J. I. S., Kawamoto, A. M., Dutra, R. de C. L. (2009). ADN - The new oxidizer around the corner for an environmentally friendly smokeless propellant. Journal of Aerospace Technology and Management, 1 (2), 153–160. doi: https://doi.org/10.5028/jatm.2009.0102153160
  20. Zhang, J., Feng, Y., Staples, R. J., Zhang, J., Shreeve, J. M. (2021). Taming nitroformate through encapsulation with nitrogen-rich hydrogen-bonded organic frameworks. Nature Communications, 12 (1). doi: https://doi.org/10.1038/s41467-021-22475-8
  21. Deppert, T. M., Smith, D. R, Shanholtz, C. (2015). Pat. No. 9505666 US. Methods to desensitize hydrazinium nitroformate (HNF). No. 14/268,470; declareted: 05.11.2015; published: 29.011.2016. Available at: https://patentimages.storage.googleapis.com/86/e5/fa/d0a6e54e76337a/US9505666.pdf
  22. De Luca, L. T., Shimada, T., Sinditskii, V. P., Calabro, M. (Eds.) (2017). Chemical Rocket Propulsion. A Comprehensive Survey of Energetic Materials. Springer, 1084. doi: https://doi.org/10.1007/978-3-319-27748-6
  23. Badgujar, D. M., Talawar, M. B., Zarko, V. E., Mahulikar, P. P. (2019). Recent Advances in Safe Synthesis of Energetic Materials: An Overview. Combustion, Explosion, and Shock Waves, 55 (3), 245–257. doi: https://doi.org/10.1134/s0010508219030018
  24. Keshavarz, M. H., Ghani, K., Asgari, A. (2015). A New Method for Predicting Heats of Decomposition of Nitroaromatics. Zeitschrift Für Anorganische Und Allgemeine Chemie, 641 (10), 1818–1823. doi: https://doi.org/10.1002/zaac.201500273
  25. Jafari, M., Keshavarz, M. H., Noorbala, M. R., Kamalvand, M. (2016). A Reliable Method for Prediction of the Condensed Phase Enthalpy of Formation of High Nitrogen Content Materials through their Gas Phase Information. ChemistrySelect, 1 (16), 5286–5296. doi: https://doi.org/10.1002/slct.201601184
  26. Keshavarz, M. H., Abadi, Y. H., Esmaeilpour, K., Damiri, S., Oftadeh, M. (2017). Introducing Novel Tetrazole Derivatives as High Performance Energetic Compounds for Confined Explosion and as Oxidizer in Solid Propellants. Propellants, Explosives, Pyrotechnics, 42 (5), 492–498. doi: https://doi.org/10.1002/prep.201600249
  27. Keshavarz, M. H., Jafari, M., Ebadpour, R. (2019). Simple method to calculate explosion temperature of ideal and non-ideal energetic compounds. Journal of Energetic Materials, 38 (2), 206–213. doi: https://doi.org/10.1080/07370652.2019.1679284
  28. Kamlet, M. J., Jacobs, S. J. (1968). Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C–H–N–O Explosives. The Journal of Chemical Physics, 48 (1), 23–35. doi: https://doi.org/10.1063/1.1667908
  29. Frem, D. (2018). A Reliable Method for Predicting the Specific Impulse of Chemical Propellants. Journal of Aerospace Technology and Management, 10. doi: https://doi.org/10.5028/jatm.v10.945
  30. Politzer, P., Murray, J. S. (2014). The role of product composition in determining detonation velocity and detonation pressure. Central European Journal of Energetic Materials, 11 (4), 459–474. Available at: https://ipo.lukasiewicz.gov.pl/wydawnictwa/wp-content/uploads/2021/03/Politzer-5.pdf
  31. Talin, D. D. (2007). Fiziko-himicheskie svoystva vzryvchatyh veschestv, porohov i tverdyh raketnyh topliv. Perm': Izdatel'stvo permskogo gosudarstvennogo tekhnicheskogo universiteta, 274. Available at: https://ua1lib.org/book/2083510/59c149?id=2083510&secret=59c149&dsource=recommend

Downloads

Published

2021-12-21

How to Cite

Kositsyna, O., Varlan, K., Dron, M., & Kulyk, O. (2021). Determining energetic characteristics and selecting environmentally friendly components for solid rocket propellants at the early stages of design. Eastern-European Journal of Enterprise Technologies, 6(6 (114), 6–14. https://doi.org/10.15587/1729-4061.2021.247233

Issue

Section

Technology organic and inorganic substances