Using the asymptotic approximation of the Maxwell element model for the analysis of stress in a conveyor belt
DOI:
https://doi.org/10.15587/1729-4061.2021.247526Keywords:
viscoelastic process, Maxwell element, Hooke element, transport conveyor, dynamic elastic modulusAbstract
The features of the propagation of dynamic stresses in a conveyor belt, the material properties of which correspond to the Maxwell element model, are considered. Analytical expressions are presented for calculating the dynamic elastic modulus, the loss modulus, and the angle of mechanical loss depending on the frequency of longitudinal oscillations in the belt of an extended transport conveyor. To analyze the dynamic stress propagation process, dimensionless parameters are introduced that characterize the specific features of the viscoelastic process in a conveyor belt, the material properties of which correspond to the Maxwell element model. The transition to the dimensionless Maxwell element model is made and the analysis of the relationship between stress and deformation of a conveyor belt element for extremely large and small values of dimensionless parameters is made. The substantiation of the scope of the Maxwell element model is given. It is shown that at sufficiently high frequencies of longitudinal stress oscillations in a conveyor belt, at which the oscillation period is much less than the characteristic oscillation decay time, the relationship between stress and deformation of the conveyor belt element corresponds to Hooke's law. A qualitative analysis of the relaxation time was carried out for a conveyor belt material, the properties of which correspond to the Maxwell element model. The analysis of the propagation of dynamic stresses in the conveyor belt for the characteristic operating modes of the transport conveyor is carried out. The conveyor operating mode with a constant deformation rate of the belt element; the mode in which a constant load is suddenly applied to the belt element; the conveyor operating mode with an instantly applied load to the belt element were investigated. It was determined that in cases where the characteristic process time significantly exceeds the stress relaxation time in the conveyor belt or the longitudinal oscillation period is much less than the stress relaxation time in the conveyor belt, the Maxwell element model can be replaced with a sufficient degree of accuracy by the Hooke element model.
References
- Zeng, F., Yan, C., Wu, Q., Wang, T. (2020). Dynamic Behaviour of a Conveyor Belt Considering Non-Uniform Bulk Material Distribution for Speed Control. Applied Sciences, 10 (13), 4436. doi: https://doi.org/10.3390/app10134436
- Yao, Y., Zhang, B. (2020). Influence of the elastic modulus of a conveyor belt on the power allocation of multi-drive conveyors. PLOS ONE, 15 (7), e0235768. doi: https://doi.org/10.1371/journal.pone.0235768
- Woźniak, D. (2020). Laboratory tests of indentation rolling resistance of conveyor belts. Measurement, 150, 107065. doi: https://doi.org/10.1016/j.measurement.2019.107065
- Blazej, R., Jurdziak, L., Kirjanow-Blazej, A., Kozlowski, T. (2021). Identification of damage development in the core of steel cord belts with the diagnostic system. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-91538-z
- Sakharwade, S. G., Nagpal, S. (2019). Analysis of Transient Belt Stretch for Horizontal and Inclined Belt Conveyor System. International Journal of Mathematical, Engineering and Management Sciences, 4 (5), 1169–1179. doi: https://doi.org/10.33889/ijmems.2019.4.5-092
- Manjgo, M., Piric, E., Vuherer, T., Burzic, M. (2018). Determination of mechanical properties of composite materials-the rubber conveyor belt with cartridges made of polyester and polyamide. ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering, 16 (1), 141–144. Available at: http://annals.fih.upt.ro/pdf-full/2018/ANNALS-2018-1-22.pdf
- Ferry, J. (1980). Viscoelastic Properties of Polymers. Wiley, 672.
- Pihnastyi, O. M. (2019). Control of the belt speed at unbalanced loading of the conveyor. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 122–129. doi: https://doi.org/10.29202/nvngu/2019-6/18
- Yang, G. (2014). Dynamics analysis and modeling of rubber belt in large mine belt conveyors. Sensors & Transducers, 181 (10), 210–218. Available at: https://www.sensorsportal.com/HTML/DIGEST/P_2492.htm
- Nordell, L., Ciozda, Z. (1984). Transient belt stresses during starting and stopping: elastic response simulated by finite element methods. Bulk Solids Handling, 4 (1), 93–98. Available at: http://www.ckit.co.za/secure/conveyor/papers/troughed/transient/transient-belt-stresses.htm
- Kulinowski, P. (2014). Simulation method of designing and selecting tensioning systems for mining belt conveyors. Archives of Mining Sciences, 59 (1), 123–138. doi: https://doi.org/10.2478/amsc-2014-0009
- Pihnastyi, O., Khodusov, V. (2020). Hydrodynamic model of transport system. East European Journal of Physics, 1, 121–136. doi: https://doi.org/10.26565/2312-4334-2020-1-11
- Lu, Y., Lin, F.-Y., Wang, Y.-C. (2015). Investigation on Influence of Speed on Rolling Resistance of Belt Conveyor Based on Viscoelastic Properties. Journal of Theoretical and Applied Mechanics, 45 (3), 53–68. doi: https://doi.org/10.1515/jtam-2015-0017
- Rudolphi, T. J., Reicks, A. V. (2006). Viscoelastic Indentation and Resistance to Motion of Conveyor Belts Using a Generalized Maxwell Model of the Backing Material. Rubber Chemistry and Technology, 79 (2), 307–319. doi: https://doi.org/10.5254/1.3547939
- Pihnastyi, O. M., Cherniavska, S. M. (2021). Analysis of stress in the conveyor belt (Maxwell–element model). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 74–81. doi: https://doi.org/10.33271/nvngu/2021-4/074
- He, D., Pang, Y., Lodewijks, G. (2016). Determination of Acceleration for Belt Conveyor Speed Control in Transient Operation. International Journal of Engineering and Technology, 8 (3), 206–211. doi: https://doi.org/10.7763/ijet.2016.v8.886
- Pascual, R. Meruane, V., Barrientos, G. (2005). Analysis of transient loads on cable-reinforced conveyor belts with damping consideration. XXVI Iberian Latin-American Congress on Computational Methods in Engineering, CIL0620, 1–15. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.494.34&rep=rep1&type=pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Oleh Pihnastyi, Svіtlana Chernіavska
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.